Displaying all 5 publications

Abstract:
Sort:
  1. McCormick A, Qasim A
    Med J Malaysia, 2005 Jul;60 Suppl B:6-11.
    PMID: 16108165
  2. Dwiyanto J, Hussain MH, Reidpath D, Ong KS, Qasim A, Lee SWH, et al.
    Sci Rep, 2021 01 29;11(1):2618.
    PMID: 33514807 DOI: 10.1038/s41598-021-82311-3
    No studies have investigated the influence of ethnicity in a multi-ethnic middle-income country with a long-standing history of co-habitation. Stool samples from 214 Malaysian community members (46 Malay, 65 Chinese, 49 Indian, and 54 Jakun) were collected. The gut microbiota of the participants was investigated using 16S amplicon sequencing. Ethnicity exhibited the largest effect size across participants (PERMANOVA Pseudo-F = 4.24, R2 = 0.06, p = 0.001). Notably, the influence of ethnicity on the gut microbiota was retained even after controlling for all demographic, dietary factors and other covariates which were significantly associated with the gut microbiome (PERMANOVA Pseudo-F = 1.67, R2 = 0.02, p = 0.002). Our result suggested that lifestyle, dietary, and uncharacterized differences collectively drive the gut microbiota variation across ethnicity, making ethnicity a reliable proxy for both identified and unidentified lifestyle and dietary variation across ethnic groups from the same community.
  3. Rather SU, Sulaimon AA, Shariff AM, Qasim A, Bamufleh HS, Alhumade HA, et al.
    Chemosphere, 2023 Oct;337:139290.
    PMID: 37348612 DOI: 10.1016/j.chemosphere.2023.139290
    Carbon dioxide is a major greenhouse gas that is responsible for global warming and renders harmful effects on the atmosphere. The unconstrained release of CO2 into the atmosphere should be prevented and various techniques have been developed in this regard to capture CO2 using different solvents and other compounds. Ionic liquids are a suitable candidate to capture CO2 due to their better solubility behaviour. In this work, two ionic liquids namely tetramethylammonium bromide (TMAB) and tetraethylammonium bromide (TEAB) are employed experimentally to capture CO2 and investigate their solubility behaviour. The study is performed at the temperature values of 303 K, 313 K, and 323 K and the pressure values of 5, 10, 15, and 20 bar equivalent to 0.5, 1.0, 1.5, and 2.0 MPa respectively. The concentrations of both ionic liquid solutions are 2.5 wt%, 5.0 wt%, and 10.0 wt%. The solubility results are considered in terms of mol fraction which is the ratio of moles of CO2 captured per moles of ionic liquid. The density and viscosity values are also determined for both compounds at respective conditions. COSMO-RS is used to generate the sigma profile, sigma surface, and Henry's constant of the ions involved in the study. CO2 is found to be soluble in both ionic liquids, but TEAB showed better solubility behaviour as compared to TMAB. The solubility of CO2 is found to be increasing with the increase in pressure while it decreases with the increase in temperature.
  4. Rather SU, Shariff AM, Sulaimon AA, Bamufleh HS, Qasim A, Saad Khan M, et al.
    Chemosphere, 2023 Jan;311(Pt 2):137102.
    PMID: 36334738 DOI: 10.1016/j.chemosphere.2022.137102
    Activity coefficient values offer insight into the intermolecular interactions between the solute and the solvent and the deviation from the ideal behavior. CO2 capture from different industrial processes is a globally pertinent issue and the search for suitable chemicals is required. To address the issue, knowledge of activity coefficient values is crucial for CO2 separation-based process. In this regard, a correlation is developed that predicts the coefficient of CO2 activity in ionic liquids by multi-nonlinear regression analysis. The correlation is developed between the pressure range of 1-50 bar and the temperature range of 298.15-33.15 K for mole fractions of 0.3, 0.5, and 0.7. Outliers' analysis is performed using the boxplot method to determine the suitability of ranges of the selected input parameters. The preceding literature does not predict the activity coefficient in relatively lower to higher temperature and pressure ranges for CO2 solubility in ionic liquids. Initially, the activity coefficient values from COSMO-RS were obtained and compared with the correlation results. The COSMO-RS and the correlation predicted results were subsequently validated with the experimental data. The average absolute error (AAE%) of the predicted correlation values is 19.53% while the root mean square error (RMSE) value is 0.465. The correlation can be used in the future to predict the CO2 activity coefficient values in ionic liquids to facilitate qualitative analyses of their CO2 capture efficiency.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links