Displaying all 4 publications

Abstract:
Sort:
  1. Nassiri Abrishamchi MA, Zainal A, Ghaleb FA, Qasem SN, Albarrak AM
    Sensors (Basel), 2022 Nov 07;22(21).
    PMID: 36366261 DOI: 10.3390/s22218564
    Smart home technologies have attracted more users in recent years due to significant advancements in their underlying enabler components, such as sensors, actuators, and processors, which are spreading in various domains and have become more affordable. However, these IoT-based solutions are prone to data leakage; this privacy issue has motivated researchers to seek a secure solution to overcome this challenge. In this regard, wireless signal eavesdropping is one of the most severe threats that enables attackers to obtain residents' sensitive information. Even if the system encrypts all communications, some cyber attacks can still steal information by interpreting the contextual data related to the transmitted signals. For example, a "fingerprint and timing-based snooping (FATS)" attack is a side-channel attack (SCA) developed to infer in-home activities passively from a remote location near the targeted house. An SCA is a sort of cyber attack that extracts valuable information from smart systems without accessing the content of data packets. This paper reviews the SCAs associated with cyber-physical systems, focusing on the proposed solutions to protect the privacy of smart homes against FATS attacks in detail. Moreover, this work clarifies shortcomings and future opportunities by analyzing the existing gaps in the reviewed methods.
  2. Al-Rimy BAS, Saeed F, Al-Sarem M, Albarrak AM, Qasem SN
    Diagnostics (Basel), 2023 May 29;13(11).
    PMID: 37296755 DOI: 10.3390/diagnostics13111903
    Knee osteoarthritis (OA) detection is an important area of research in health informatics that aims to improve the accuracy of diagnosing this debilitating condition. In this paper, we investigate the ability of DenseNet169, a deep convolutional neural network architecture, for knee osteoarthritis detection using X-ray images. We focus on the use of the DenseNet169 architecture and propose an adaptive early stopping technique that utilizes gradual cross-entropy loss estimation. The proposed approach allows for the efficient selection of the optimal number of training epochs, thus preventing overfitting. To achieve the goal of this study, the adaptive early stopping mechanism that observes the validation accuracy as a threshold was designed. Then, the gradual cross-entropy (GCE) loss estimation technique was developed and integrated to the epoch training mechanism. Both adaptive early stopping and GCE were incorporated into the DenseNet169 for the OA detection model. The performance of the model was measured using several metrics including accuracy, precision, and recall. The obtained results were compared with those obtained from the existing works. The comparison shows that the proposed model outperformed the existing solutions in terms of accuracy, precision, recall, and loss performance, which indicates that the adaptive early stopping coupled with GCE improved the ability of DenseNet169 to accurately detect knee OA.
  3. Ali A, Al-Rimy BAS, Tin TT, Altamimi SN, Qasem SN, Saeed F
    Sensors (Basel), 2023 Aug 28;23(17).
    PMID: 37687931 DOI: 10.3390/s23177476
    Precision medicine has emerged as a transformative approach to healthcare, aiming to deliver personalized treatments and therapies tailored to individual patients. However, the realization of precision medicine relies heavily on the availability of comprehensive and diverse medical data. In this context, blockchain-enabled federated learning, coupled with electronic medical records (EMRs), presents a groundbreaking solution to unlock revolutionary insights in precision medicine. This abstract explores the potential of blockchain technology to empower precision medicine by enabling secure and decentralized data sharing and analysis. By leveraging blockchain's immutability, transparency, and cryptographic protocols, federated learning can be conducted on distributed EMR datasets without compromising patient privacy. The integration of blockchain technology ensures data integrity, traceability, and consent management, thereby addressing critical concerns associated with data privacy and security. Through the federated learning paradigm, healthcare institutions and research organizations can collaboratively train machine learning models on locally stored EMR data, without the need for data centralization. The blockchain acts as a decentralized ledger, securely recording the training process and aggregating model updates while preserving data privacy at its source. This approach allows the discovery of patterns, correlations, and novel insights across a wide range of medical conditions and patient populations. By unlocking revolutionary insights through blockchain-enabled federated learning and EMRs, precision medicine can revolutionize healthcare delivery. This paradigm shift has the potential to improve diagnosis accuracy, optimize treatment plans, identify subpopulations for clinical trials, and expedite the development of novel therapies. Furthermore, the transparent and auditable nature of blockchain technology enhances trust among stakeholders, enabling greater collaboration, data sharing, and collective intelligence in the pursuit of advancing precision medicine. In conclusion, this abstract highlights the transformative potential of blockchain-enabled federated learning in empowering precision medicine. By unlocking revolutionary insights from diverse and distributed EMR datasets, this approach paves the way for a future where healthcare is personalized, efficient, and tailored to the unique needs of each patient.
  4. Mosavi A, Shokri M, Mansor Z, Qasem SN, Band SS, Mohammadzadeh A
    Entropy (Basel), 2020 Sep 18;22(9).
    PMID: 33286810 DOI: 10.3390/e22091041
    In this study, a new approach to basis of intelligent systems and machine learning algorithms is introduced for solving singular multi-pantograph differential equations (SMDEs). For the first time, a type-2 fuzzy logic based approach is formulated to find an approximated solution. The rules of the suggested type-2 fuzzy logic system (T2-FLS) are optimized by the square root cubature Kalman filter (SCKF) such that the proposed fineness function to be minimized. Furthermore, the stability and boundedness of the estimation error is proved by novel approach on basis of Lyapunov theorem. The accuracy and robustness of the suggested algorithm is verified by several statistical examinations. It is shown that the suggested method results in an accurate solution with rapid convergence and a lower computational cost.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links