Displaying all 2 publications

Abstract:
Sort:
  1. Manzoor B, Othman I, Pomares JC
    PMID: 34204147 DOI: 10.3390/ijerph18116135
    Digital technologies (DTs) are proven helpful in the Architecture, Engineering and Construction (AEC) industry due to their varied benefits to project stakeholders, such as enhanced visualization, better data sharing, reduction in building waste, increased productivity, sustainable performance and safety improvement. Therefore, researchers have conducted various studies on DTs in the AEC industry over the year; however, this study explores the state-of-the-art research on DTs in the AEC industry by means of a bibliometric-qualitative review method. This research would uncover new knowledge gaps and practical needs in the domain of DTs in the AEC industry. In addition, bibliometric analysis was carried out by utilizing academic publications from Scopus (i.e., 11,047 publications for the AEC industry, 1956 for DTs and 1778 for DTs in the AEC industry). Furthermore, a qualitative review was further conducted on 200 screened selected research publications in the domain of DTs. This study brings attention to the body of knowledge by envisioning trends and patterns by defining key research interests, journals, countries, new advancements, challenges, negative attitudes and future directions towards DTs in the AEC industry. However, this study is the first in its vital importance and uniqueness by providing a broad updated review of DTs in the AEC literature. Furthermore, this research laid a foundation for future researchers, policy makers and practitioners to explore the limitations in future research.
  2. Waqar A, Othman I, Pomares JC
    PMID: 36900821 DOI: 10.3390/ijerph20053800
    After a decade of research and development, 3D printing is now an established technique in the construction sector, complete with its own set of accepted standards. The use of 3D printing in construction might potentially improve the outcome of the project as a whole. However, traditional strategies are often used in the residential construction industry in Malaysia, which causes serious public safety and health issues along with a negative impact on the environment. In the context of project management, overall project success (OPS) has five dimensions, such as cost, time, quality, safety, and environment. Understanding the role of 3D printing in relation to OPS dimensions in Malaysian residential construction projects would allow construction professionals to adopt 3D printing more easily. The aim of the study was to find the impact of 3D construction printing on OPS while considering the implications for all five dimensions. Fifteen professionals were interviewed to first evaluate and summarise the impact factors of 3D printing using the current literature. Then, a pilot survey was conducted, and the results were checked using exploratory factor analysis (EFA). The feasibility of 3D printing in the building sector was investigated by surveying industry experts. Partial least squares structural equation modelling was used to investigate and validate the fundamental structure and linkages between 3D printing and OPS (PLS-SEM). A strong correlation was found between 3D printing in residential projects and OPS. Highly positive implications are indicated by the environmental and safety dimensions of OPS. Malaysian decision-makers may look to the outcomes of introducing 3D printing into the residential construction industry as a modern method for increasing environmental sustainability, public health and safety, reducing cost and time, and increasing the quality of construction work. With this study's findings in hand, construction engineering management in Malaysia's residential building sector might benefit from a deeper understanding of how 3D printing is used for improving environmental compliance, public health and safety, and project scope.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links