Displaying all 6 publications

Abstract:
Sort:
  1. Tan NH, Poh CH, Tan CS
    Toxicon, 1989;27(9):1065-70.
    PMID: 2799837
    Bungarus candidus venom exhibited high hyaluronidase, acetylcholinesterase and phospholipase A activities; low proteinase, 5'-nucleotidase, alkaline phosphomonoesterase and phosphodiesterase activities and moderately high L-amino acid oxidase activity. SP-Sephadex C-50 ion exchange chromatographic fractionation of the venom and Sephadex G-50 chromatography of the major lethal venom fractions indicate that the venom contains at least two highly lethal, basic phospholipases A with LD50 (i.v.) values of 0.02 micrograms/g (F6A) and 0.18 micrograms/g (F4A), respectively; as well as two polypeptide toxins with LD50 (i.v.) values of 0.17 micrograms/g and 0.83 micrograms/g, respectively. The major lethal toxin is the basic lethal phospholipase A, F6A, which accounts for approximately 13% of the venom protein and has a mol. wt of 21,000.
  2. Yee PTI, Laa Poh C
    Virology, 2017 06;506:121-129.
    PMID: 28384566 DOI: 10.1016/j.virol.2017.03.017
    Enterovirus-A71 (EV-A71) is an etiological agent of the hand, foot and mouth disease (HFMD). EV-A71 infection produces high fever and ulcers in children. Some EV-A71 strains produce severe infections leading to pulmonary edema and death. Although the protective efficacy of the inactivated vaccine (IV) was ≥90% against mild HFMD, there was approximately 80% protection against severe HFMD. The monovalent EV-A71 IV elicits humoral immunity but lacks long-term immunogenicity. Spontaneous mutations of the EV-A71 genome could lead to antigenicity changes and the virus may not be neutralized by antibodies elicited by the IV. A better alternative would be the live attenuated vaccine (LAV) that elicits cellular and humoral immunity. The LAV induces excellent antigenicity and chances of reversion is reduced by presence of multiple mutations which could reduce pathogenicity. Besides CV-A16, outbreaks have been caused by CV-A6 and CV-A10, hence the development of bivalent and trivalent vaccines is required.
  3. Kwan TK, Poh CH, Perumal R, Gower DB
    Biochem. Mol. Biol. Int., 1994 Oct;34(4):661-70.
    PMID: 7866291
    The metabolism of varying quantities of pregnenolone has been studied in nuclei-free homogenates from Macaca fascicularis testes by using capillary gas chromatography, after derivatization of metabolites as O-methyl oximes/trimethylsilyl ethers. Evidence was obtained indicating that both pathways for testosterone biosynthesis were operating. 5-Androstene-3 beta, 17 beta-diol was formed in especially high quantities. Two 16-androstenes, namely 5,16-androstadien-3 beta-ol and 5 alpha-androst-16-en-3 beta-ol, were also quantitatively important as metabolites. Co-incubation of stored homogenates with relaxin resulted in 80-100% reduction of the formation of all metabolites quantified except for 5 alpha-androst-16-en-3-one, which was stimulated. Freezing the homogenates at -10 degrees C for 3 weeks resulted in marked 4- to 6-fold reduction in the yields of testosterone and of the 5-ene and 4-ene metabolites from pregnenolone.
  4. Kwan TK, Poh CH, Perumal R, Gower DB
    Biochem. Int., 1988 Nov;17(5):885-94.
    PMID: 3254165
    The metabolism of pregnenolone in subcellular fractions of the testes of the macaque (Macaca fascicularis) has been studied using capillary gas chromatography to characterize and quantify the metabolites, after their conversion into the O-methyloxime and/or trimethylsilyl ether derivatives. The microsomal incubations yielded the greatest quantities of metabolites, with lesser amounts in the mitochondrial fraction. The cytosolic fraction contained no significant quantity of metabolites after incubation, except for 5alpha-androst-16-en-3 beta-ol. This, and other odorous androst-16-enes, found in the microsomal fraction, are of particular interest in the context of animal communication because of their possible pheromonal role. Pregnenolone was converted into androst-5-ene-3 beta,17 beta-diol, androst-4-ene-3,17-dione and testosterone, suggesting that both classical pathways for testosterone synthesis were operating. Testosterone was further converted into 5 alpha-reduced androstanediols, especially in the microsomal fraction.
  5. Singh S, Chow VT, Chan KP, Ling AE, Poh CL
    J Virol Methods, 2000 Aug;88(2):193-204.
    PMID: 10960707
    A specific and sensitive method based on RT-PCR was developed to detect enterovirus 71 (EV71) from patients with hand, foot and mouth disease, myocarditis, aseptic meningitis and acute flaccid paralysis. RT-PCR primers from conserved parts of the VP1 capsid gene were designed on the basis of good correlation with sequences of EV71 strains. These primers successfully amplified 44 strains of EV71 including 34 strains isolated from Singapore in 1997 and 1998, eight strains from Malaysia isolated in 1997 and 1998, one Japanese strain and the neurovirulent strain EV71/7423/MS/87. RT-PCR of 30 strains of other enteroviruses including coxsackievirus A and B, and echoviruses failed to give any positive amplicons. Hence, RT-PCR with these primers showed 100% correlation with serotyping. Direct sequencing of the RT-PCR products of 20 EV71 strains revealed a distinct cluster with two major subgroups, thus enabling genetic typing of the viruses. The genetic heterogeneity of these strains culminated in amino acid substitutions within the VP1, VP2 and VP3 regions. The sequencing of a 2.9 kb fragment comprising the capsid region and the major part of 5' UTR of two Singapore strains revealed that they belonged to a group distinct from the prototype EV71/BrCr strain and the EV71/7423/MS/87 strain. The dendrogram generated from 341 bp fragments within the VP1 region revealed that the strains of Singapore, Malaysia and Taiwan belong to two entirely different EV71 genogroups, distinct from the three genogroups identified in another recent study.
  6. Low Z, Lani R, Tiong V, Poh C, AbuBakar S, Hassandarvish P
    Int J Mol Sci, 2023 May 31;24(11).
    PMID: 37298539 DOI: 10.3390/ijms24119589
    Despite the fact that coronavirus disease 2019 (COVID-19) treatment and management are now considerably regulated, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still one of the leading causes of death in 2022. The availability of COVID-19 vaccines, FDA-approved antivirals, and monoclonal antibodies in low-income countries still poses an issue to be addressed. Natural products, particularly traditional Chinese medicines (TCMs) and medicinal plant extracts (or their active component), have challenged the dominance of drug repurposing and synthetic compound libraries in COVID-19 therapeutics. Their abundant resources and excellent antiviral performance make natural products a relatively cheap and readily available alternative for COVID-19 therapeutics. Here, we deliberately review the anti-SARS-CoV-2 mechanisms of the natural products, their potency (pharmacological profiles), and application strategies for COVID-19 intervention. In light of their advantages, this review is intended to acknowledge the potential of natural products as COVID-19 therapeutic candidates.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links