A search for new long-lived particles decaying to leptons is presented using proton-proton collisions produced by the LHC at √[s]=8 TeV. Data used for the analysis were collected by the CMS detector and correspond to an integrated luminosity of 19.7 fb(-1). Events are selected with an electron and muon with opposite charges that both have transverse impact parameter values between 0.02 and 2 cm. The search has been designed to be sensitive to a wide range of models with nonprompt e-μ final states. Limits are set on the "displaced supersymmetry" model, with pair production of top squarks decaying into an e-μ final state via R-parity-violating interactions. The results are the most restrictive to date on this model, with the most stringent limit being obtained for a top squark lifetime corresponding to cτ=2 cm, excluding masses below 790 GeV at 95% confidence level.
A study of vector boson scattering in pp collisions at a center-of-mass energy of 8 TeV is presented. The data sample corresponds to an integrated luminosity of 19.4 fb(-1) collected with the CMS detector. Candidate events are selected with exactly two leptons of the same charge, two jets with large rapidity separation and high dijet mass, and moderate missing transverse energy. The signal region is expected to be dominated by electroweak same-sign W-boson pair production. The observation agrees with the standard model prediction. The observed significance is 2.0 standard deviations, where a significance of 3.1 standard deviations is expected based on the standard model. Cross section measurements for W(±)W(±) and WZ processes in the fiducial region are reported. Bounds on the structure of quartic vector-boson interactions are given in the framework of dimension-eight effective field theory operators, as well as limits on the production of doubly charged Higgs bosons.
Results are presented of a search for a "natural" supersymmetry scenario with gauge mediated symmetry breaking. It is assumed that only the supersymmetric partners of the top quark (the top squark) and the Higgs boson (Higgsino) are accessible. Events are examined in which there are two photons forming a Higgs boson candidate, and at least two b-quark jets. In 19.7 fb-1 of proton-proton collision data at s=8 TeV, recorded in the CMS experiment, no evidence of a signal is found and lower limits at the 95% confidence level are set, excluding the top squark mass below 360 to 410 GeV, depending on the Higgsino mass.
Searches for the direct electroweak production of supersymmetric charginos, neutralinos, and sleptons in a variety of signatures with leptons and [Formula: see text], [Formula: see text], and Higgs bosons are presented. Results are based on a sample of proton-proton collision data collected at center-of-mass energy [Formula: see text] with the CMS detector in 2012, corresponding to an integrated luminosity of 19.5 [Formula: see text]. The observed event rates are in agreement with expectations from the standard model. These results probe charginos and neutralinos with masses up to 720 [Formula: see text], and sleptons up to 260 [Formula: see text], depending on the model details.
The production cross sections of the B^{+}, B^{0}, and B_{s}^{0} mesons, and of their charge conjugates, are measured via exclusive hadronic decays in p+Pb collisions at the center-of-mass energy sqrt[s_{NN}]=5.02 TeV with the CMS detector at the CERN LHC. The data set used for this analysis corresponds to an integrated luminosity of 34.6 nb^{-1}. The production cross sections are measured in the transverse momentum range between 10 and 60 GeV/c. No significant modification is observed compared to proton-proton perturbative QCD calculations scaled by the number of incoherent nucleon-nucleon collisions. These results provide a baseline for the study of in-medium b quark energy loss in Pb+Pb collisions.
Results are presented from a search for new decaying massive particles whose presence is inferred from an imbalance in transverse momentum and which are produced in association with a single top quark that decays into a bottom quark and two light quarks. The measurement is performed using 19.7 fb^{-1} of data from proton-proton collisions at a center-of-mass energy of 8 TeV, collected with the CMS detector at the CERN LHC. No deviations from the standard model predictions are observed and lower limits are set on the masses of new invisible bosons. In particular, scalar and vector particles, with masses below 330 and 650 GeV, respectively, are excluded at 95% confidence level, thereby substantially extending a previous limit published by the CDF Collaboration.
A search for a standard model Higgs boson produced in association with a top-quark pair and decaying to bottom quarks is presented. Events with hadronic jets and one or two oppositely charged leptons are selected from a data sample corresponding to an integrated luminosity of 19.5[Formula: see text] collected by the CMS experiment at the LHC in [Formula: see text] collisions at a centre-of-mass energy of 8[Formula: see text]. In order to separate the signal from the larger [Formula: see text] + jets background, this analysis uses a matrix element method that assigns a probability density value to each reconstructed event under signal or background hypotheses. The ratio between the two values is used in a maximum likelihood fit to extract the signal yield. The results are presented in terms of the measured signal strength modifier, [Formula: see text], relative to the standard model prediction for a Higgs boson mass of 125[Formula: see text]. The observed (expected) exclusion limit at a 95 % confidence level is [Formula: see text] (3.3), corresponding to a best fit value [Formula: see text].
Properties of the Higgs boson with mass near 125[Formula: see text] are measured in proton-proton collisions with the CMS experiment at the LHC. Comprehensive sets of production and decay measurements are combined. The decay channels include [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] pairs. The data samples were collected in 2011 and 2012 and correspond to integrated luminosities of up to 5.1[Formula: see text] at 7[Formula: see text] and up to 19.7[Formula: see text] at 8[Formula: see text]. From the high-resolution [Formula: see text] and [Formula: see text] channels, the mass of the Higgs boson is determined to be [Formula: see text]. For this mass value, the event yields obtained in the different analyses tagging specific decay channels and production mechanisms are consistent with those expected for the standard model Higgs boson. The combined best-fit signal relative to the standard model expectation is [Formula: see text] at the measured mass. The couplings of the Higgs boson are probed for deviations in magnitude from the standard model predictions in multiple ways, including searches for invisible and undetected decays. No significant deviations are found.
This paper presents a measurement of the inclusive 3-jet production differential cross section at a proton-proton centre-of-mass energy of 7 TeV using data corresponding to an integrated luminosity of 5[Formula: see text]collected with the CMS detector. The analysis is based on the three jets with the highest transverse momenta. The cross section is measured as a function of the invariant mass of the three jets in a range of 445-3270 GeV and in two bins of the maximum rapidity of the jets up to a value of 2. A comparison between the measurement and the prediction from perturbative QCD at next-to-leading order is performed. Within uncertainties, data and theory are in agreement. The sensitivity of the observable to the strong coupling constant [Formula: see text] is studied. A fit to all data points with 3-jet masses larger than 664 GeV gives a value of the strong coupling constant of [Formula: see text].
Results are presented from a search for particle dark matter (DM), extra dimensions, and unparticles using events containing a jet and an imbalance in transverse momentum. The data were collected by the CMS detector in proton-proton collisions at the LHC and correspond to an integrated luminosity of 19.7[Formula: see text]at a centre-of-mass energy of 8[Formula: see text]. The number of observed events is found to be consistent with the standard model prediction. Limits are placed on the DM-nucleon scattering cross section as a function of the DM particle mass for spin-dependent and spin-independent interactions. Limits are also placed on the scale parameter [Formula: see text] in the Arkani-Hamed, Dimopoulos, and Dvali (ADD) model of large extra dimensions, and on the unparticle model parameter [Formula: see text]. The constraints on ADD models and unparticles are the most stringent limits in this channel and those on the DM-nucleon scattering cross section are an improvement over previous collider results.
Results are reported from a search for the pair production of top squarks, the supersymmetric partners of top quarks, in final states with jets and missing transverse momentum. The data sample used in this search was collected by the CMS detector and corresponds to an integrated luminosity of 18.9[Formula: see text] of proton-proton collisions at a centre-of-mass energy of 8[Formula: see text] produced by the LHC. The search features novel background suppression and prediction methods, including a dedicated top quark pair reconstruction algorithm. The data are found to be in agreement with the predicted backgrounds. Exclusion limits are set in simplified supersymmetry models with the top squark decaying to jets and an undetected neutralino, either through a top quark or through a bottom quark and chargino. Models with the top squark decaying via a top quark are excluded for top squark masses up to 755[Formula: see text] in the case of neutralino masses below 200[Formula: see text]. For decays via a chargino, top squark masses up to 620[Formula: see text] are excluded, depending on the masses of the chargino and neutralino.
A search for a massive resonance [Formula: see text]decaying into a W and a Higgs boson in the [Formula: see text] ([Formula: see text], [Formula: see text]) final state is presented. Results are based on data corresponding to an integrated luminosity of 19.7[Formula: see text] of proton-proton collisions at [Formula: see text] [Formula: see text], collected using the CMS detector at the LHC. For a high-mass ([Formula: see text]1[Formula: see text]) resonance, the two bottom quarks coming from the Higgs boson decay are reconstructed as a single jet, which can be tagged by placing requirements on its substructure and flavour. Exclusion limits at 95 % confidence level are set on the production cross section of a narrow resonance decaying into WH, as a function of its mass. In the context of a little Higgs model, a lower limit on the [Formula: see text] mass of 1.4[Formula: see text] is set. In a heavy vector triplet model that mimics the properties of composite Higgs models, a lower limit on the [Formula: see text] mass of 1.5[Formula: see text] is set. In the context of this model, the results are combined with related searches to obtain a lower limit on the [Formula: see text] mass of 1.8[Formula: see text], the most restrictive to date for decays to a pair of standard model bosons.
Jet multiplicity distributions in top quark pair ([Formula: see text]) events are measured in pp collisions at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC using a data set corresponding to an integrated luminosity of 19.7[Formula: see text]. The measurement is performed in the dilepton decay channels ([Formula: see text], [Formula: see text], and [Formula: see text]). The absolute and normalized differential cross sections for [Formula: see text] production are measured as a function of the jet multiplicity in the event for different jet transverse momentum thresholds and the kinematic properties of the leading additional jets. The differential [Formula: see text] and [Formula: see text] cross sections are presented for the first time as a function of the kinematic properties of the leading additional [Formula: see text] jets. Furthermore, the fraction of events without additional jets above a threshold is measured as a function of the transverse momenta of the leading additional jets and the scalar sum of the transverse momenta of all additional jets. The data are compared and found to be consistent with predictions from several perturbative quantum chromodynamics event generators and a next-to-leading order calculation.
A measurement of the cross section for the production of top quark-antiquark pairs ([Formula: see text]) in association with a vector boson V (W or Z) in proton-proton collisions at [Formula: see text][Formula: see text] is presented. The results are based on a dataset corresponding to an integrated luminosity of 19.5 fb[Formula: see text] recorded with the CMS detector at the LHC. The measurement is performed in three leptonic (e and [Formula: see text]) channels: a same-sign dilepton analysis targeting [Formula: see text] events, and trilepton and four-lepton analyses designed for [Formula: see text] events. In the same-sign dilepton channel, the [Formula: see text] cross section is measured as [Formula: see text], corresponding to a significance of 1.6 standard deviations over the background-only hypothesis. Combining the trilepton and four-lepton channels, a direct measurement of the [Formula: see text] cross section, [Formula: see text], is obtained with a significance of 3.1 standard deviations. The measured cross sections are compatible with standard model predictions within their experimental uncertainties. The inclusive [Formula: see text] process is observed with a significance of 3.7 standard deviations from the combination of all three leptonic channels.
Measurements are reported of the WZ and ZZ production cross sections in proton-proton collisions at [Formula: see text][Formula: see text] in final states where one Z boson decays to b-tagged jets. The other gauge boson, either W or Z, is detected through its leptonic decay (either [Formula: see text], [Formula: see text] or [Formula: see text], [Formula: see text], or [Formula: see text]). The results are based on data corresponding to an integrated luminosity of 18.9 fb[Formula: see text] collected with the CMS detector at the Large Hadron Collider. The measured cross sections, [Formula: see text] and [Formula: see text], are consistent with next-to-leading order quantum chromodynamics calculations.
The normalised differential top quark-antiquark production cross section is measured as a function of the jet multiplicity in proton-proton collisions at a centre-of-mass energy of 7[Formula: see text] at the LHC with the CMS detector. The measurement is performed in both the dilepton and lepton+jets decay channels using data corresponding to an integrated luminosity of 5.0[Formula: see text]. Using a procedure to associate jets to decay products of the top quarks, the differential cross section of the [Formula: see text] production is determined as a function of the additional jet multiplicity in the lepton+jets channel. Furthermore, the fraction of events with no additional jets is measured in the dilepton channel, as a function of the threshold on the jet transverse momentum. The measurements are compared with predictions from perturbative quantum chromodynamics and no significant deviations are observed.
The cross section for [Formula: see text] production in the all-jets final state is measured in pp collisions at a centre-of-mass energy of 8 [Formula: see text] at the LHC with the CMS detector, in data corresponding to an integrated luminosity of 18.4 [Formula: see text]. The inclusive cross section is found to be [Formula: see text] [Formula: see text]. The normalized differential cross sections are measured as a function of the top quark transverse momenta, [Formula: see text], and compared to predictions from quantum chromodynamics. The results are reported at detector, parton, and particle levels. In all cases, the measured top quark [Formula: see text] spectra are significantly softer than theoretical predictions.
New sets of parameters ("tunes") for the underlying-event (UE) modelling of the pythia8, pythia6 and herwig++ Monte Carlo event generators are constructed using different parton distribution functions. Combined fits to CMS UE proton-proton ([Formula: see text]) data at [Formula: see text] and to UE proton-antiproton ([Formula: see text]) data from the CDF experiment at lower [Formula: see text], are used to study the UE models and constrain their parameters, providing thereby improved predictions for proton-proton collisions at 13[Formula: see text]. In addition, it is investigated whether the values of the parameters obtained from fits to UE observables are consistent with the values determined from fitting observables sensitive to double-parton scattering processes. Finally, comparisons are presented of the UE tunes to "minimum bias" (MB) events, multijet, and Drell-Yan ([Formula: see text] lepton-antilepton+jets) observables at 7 and 8[Formula: see text], as well as predictions for MB and UE observables at 13[Formula: see text].
Stringent limits are set on the long-lived lepton-like sector of the phenomenological minimal supersymmetric standard model (pMSSM) and the anomaly-mediated supersymmetry breaking (AMSB) model. The limits are derived from the results presented in a recent search for long-lived charged particles in proton-proton collisions, based on data collected by the CMS detector at a centre-of-mass energy of 8 TeV at the Large Hadron Collider. In the pMSSM parameter sub-space considered, 95.9 % of the points predicting charginos with a lifetime of at least 10 ns are excluded. These constraints on the pMSSM are the first obtained at the LHC. Charginos with a lifetime greater than 100 ns and masses up to about 800 GeV in the AMSB model are also excluded. The method described can also be used to set constraints on other models.
Measurements of the differential and double-differential Drell-Yan cross sections in the dielectron and dimuon channels are presented. They are based on proton-proton collision data at [Formula: see text] recorded with the CMS detector at the LHC and corresponding to an integrated luminosity of 19.7[Formula: see text]. The measured inclusive cross section in the [Formula: see text] peak region (60-120[Formula: see text]), obtained from the combination of the dielectron and dimuon channels, is [Formula: see text], where the statistical uncertainty is negligible. The differential cross section [Formula: see text] in the dilepton mass range 15-2000[Formula: see text] is measured and corrected to the full phase space. The double-differential cross section [Formula: see text] is also measured over the mass range 20 to 1500[Formula: see text] and absolute dilepton rapidity from 0 to 2.4. In addition, the ratios of the normalized differential cross sections measured at [Formula: see text] and 8[Formula: see text] are presented. These measurements are compared to the predictions of perturbative QCD at next-to-leading and next-to-next-to-leading (NNLO) orders using various sets of parton distribution functions (PDFs). The results agree with the NNLO theoretical predictions computed with fewz 3.1 using the CT10 NNLO and NNPDF2.1 NNLO PDFs. The measured double-differential cross section and ratio of normalized differential cross sections are sufficiently precise to constrain the proton PDFs.