OBJECTIVES: This study aimed to formulate FMTs using cocoa butter as a base and investigate the effect of various disintegrants and superdisintegrants on their characteristics.
METHODS: Cocoa butter-based FMTs were prepared via the fusion molding technique. Different disintegrants and superdisintegrants were added at varying concentrations and subjected to characterization. The optimal formulation was selected and incorporated with 10 mg memantine hydrochloride.
RESULTS: The optimal FMT formulation consisted of 340 mg cocoa butter, 75 mg starch, and 75 mg crospovidone, exhibiting a hardness of 17.12 ± 0.31 N and a disintegration time of 32.67 ± 0.17 s. Furthermore, FMTs demonstrated a faster release profile compared to the commercially available product, Ebixa. SEM micrographs revealed homogenous blending of individual ingredients within the cocoa butter matrix and FT-IR analysis confirmed the chemical stability of memantine hydrochloride in the formulation. The dissolution profile of F17 suggested that the drug in FMTs released faster compared to Ebixia. Memantine hydrochloride achieved 98.07% of drug release in FMTs at 10 min. Moreover, the prepared FMTs exhibited stability for at least 6 months.
CONCLUSION: The successful development of cocoa butter-based FMTs containing memantine hydrochloride highlights the potential of cocoa butter as viable alternative matrix-forming material for FMTs production. This innovative formulation offers patients a convenient alternative for medication administration.
OBJECTIVE: This study aims to prepare FMF with different formulations using solvent casting methods and to compare the effects of different drying methods, including oven drying and freeze drying, on the properties of the films.
METHODS: Various formulations were created by manipulating polymer types (starch, hydroxypropyl methylcellulose (HPMC) and guar gum) at different concentrations, along with fixed concentrations of QTP and other excipients. Characterization tests including surface morphology, weight, thickness, pH, tensile strength, elongation length, Young's modulus, folding endurance and disintegration time were conducted. The optimal FMF formulation was identified and further evaluated for moisture and drug content, dissolution behavior, accelerated stability, X-ray diffraction (XRD), and palatability.
RESULTS: FMF containing 10 mg guar gum/film developed using oven drying emerged as the optimum choice, exhibiting desirable film appearance, ultra-thin thickness (0.453 ± 0.002 mm), appropriate pH for oral intake (pH 5.0), optimal moisture content of 11.810%, rapid disintegration (52.67 ± 1.53 s), high flexibility (folding endurance > 300 times) and lower Young's modulus (1.308 ± 0.214).
CONCLUSION: Oven drying method has been proven to be favorable for developing FMF containing QTP, meeting all testing criteria and providing an alternative option for QTP prescription.