MATERIALS AND METHODS: Women underwent self-sampling followed by gynecologist sampling during screening at two primary health clinics. Pap cytology of cervical specimens was evaluated for specimen adequacy, presence of endocervical cells or transformation zone cells and cytological interpretation for cells abnormalities. Cervical specimens were also extracted and tested for HPV DNA detection. Positive HPV smears underwent gene sequencing and HPV genotyping by referring to the online NCBI gene bank. Results were compared between samplings by Kappa agreement and McNemar test.
RESULTS: For Pap specimen adequacy, KSSD showed 100% agreement with gynecologist sampling but had only 32.3% agreement for presence of endocervical cells. Both sampling showed 100% agreement with only 1 case detected HSIL favouring CIN2 for cytology result. HPV DNA detection showed 86.2%agreement (K=0.64, 95% CI 0.524-0.756, p=0.001) between samplings. KSSD and gynaecologist sampling identified high risk HPV in 17.3% and 23.9% respectively (p= 0.014).
CONCLUSION: The self-sampling using Kato device can serve as a tool in Pap cytology and HPV DNA detection in low resource settings in Malaysia. Self-sampling devices such as KSSD can be used as an alternative technique to gynaecologist sampling for cervical cancer screening among rural populations in Malaysia.
METHODS: The full genomic sequences of all known different RV-A and -B prototypes were downloaded from the National Centre for Biotechnology Information (NCBI) and divided into minor low-density lipoprotein receptor (LDLR) and major intercellular adhesion molecule groups (ICAM). The sequences were edited using Biological Sequence Alignment Editor, v 7.2.0 (BioEdit software) to study each capsid protein (VP1, VP2, VP3, and VP4) and analyzed using the EMBL-EBI ClustalW server and the more current Clustal Omega tool for the calculation of the identities and similarities.
RESULTS: We analyzed and predicted immunogenic motifs from capsid proteins that are conserved across distinct RV serotypes using a bioinformatics technique. The amino acid sequences of VP3 were found to be the most varied, while VP4 was the most conserved protein among all RV-A and RV-B strains. Among all strains studied, RV-74 demonstrated the highest degree of homology to other strains and could be a potential genetic source for recombinant protein production. Nine highly conserved regions with a minimum length of 9-mers were identified, which could serve as potential immune targets against rhinoviruses.
CONCLUSION: Therefore, bioinformatics analysis conducted in the current study has paved the way for the selection of immunogenic targets. Bioinformatically, the ideal strain's capsid protein is suggested to contain the most common RVs immunogenic sites.