Displaying all 5 publications

Abstract:
Sort:
  1. Peñaloza C, Robledo D, Barría A, Trịnh TQ, Mahmuddin M, Wiener P, et al.
    G3 (Bethesda), 2020 08 05;10(8):2777-2785.
    PMID: 32532799 DOI: 10.1534/g3.120.401343
    Tilapia are among the most important farmed fish species worldwide, and are fundamental for the food security of many developing countries. Several genetically improved Nile tilapia (Oreochromis niloticus) strains exist, such as the iconic Genetically Improved Farmed Tilapia (GIFT), and breeding programs typically follow classical pedigree-based selection. The use of genome-wide single-nucleotide polymorphism (SNP) data can enable an understanding of the genetic architecture of economically important traits and the acceleration of genetic gain via genomic selection. Due to the global importance and diversity of Nile tilapia, an open access SNP array would be beneficial for aquaculture research and production. In the current study, a ∼65K SNP array was designed based on SNPs discovered from whole-genome sequence data from a GIFT breeding nucleus population and the overlap with SNP datasets from wild fish populations and several other farmed Nile tilapia strains. The SNP array was applied to clearly distinguish between different tilapia populations across Asia and Africa, with at least ∼30,000 SNPs segregating in each of the diverse population samples tested. It is anticipated that this SNP array will be an enabling tool for population genetics and tilapia breeding research, facilitating consistency and comparison of results across studies.
  2. Barría A, Peñaloza C, Papadopoulou A, Mahmuddin M, Doeschl-Wilson A, Benzie JAH, et al.
    Evol Appl, 2023 Jun;16(6):1220-1235.
    PMID: 37360025 DOI: 10.1111/eva.13560
    Nile tilapia (Oreochromis niloticus) is among the most farmed finfish worldwide, distributed across different environmental conditions. Its wide distribution has mainly been facilitated by several breeding programs and widespread dissemination of genetically improved strains. In the first Nile tilapia study exploiting a whole-genome pooled sequencing (Poolseq) approach, we identified the genetic structure and signatures of selection in diverse, farmed Nile tilapia populations, with a particular focus on the GIFT strain, developed in the 1980s, and currently managed by WorldFish (GIFTw). We also investigated important farmed strains from The Philippines and Africa. Using both SNP array data and Poolseq SNPs, we characterized the population structure of these samples. We observed the greatest separation between the Asian and African populations and greater admixture in the Asian populations than in the African ones. We also established that the SNP array data were able to successfully resolve relationships between these diverse Nile tilapia populations. The Poolseq data identified genomic regions with high levels of differentiation (F ST) between GIFTw and the other populations. Gene ontology terms associated with mesoderm development were significantly enriched in the genes located in these regions. A region on chromosome Oni06 was genetically differentiated in pairwise comparisons between GIFTw and all other populations. This region contains genes associated with muscle-related traits and overlaps with a previously published QTL for fillet yield, suggesting that these traits may have been direct targets for selection on GIFT. A nearby region was also identified using XP-EHH to detect genomic differentiation using the SNP array data. Genomic regions with high or extended homozygosity within each population were also identified. This study provides putative genomic landmarks associated with the recent domestication process in several Nile tilapia populations, which could help to inform their genetic management and improvement.
  3. Barría A, Trịnh TQ, Mahmuddin M, Peñaloza C, Papadopoulou A, Gervais O, et al.
    Heredity (Edinb), 2021 Sep;127(3):334-343.
    PMID: 34262170 DOI: 10.1038/s41437-021-00447-4
    Enhancing host resistance to infectious disease has received increasing attention in recent years as a major goal of farm animal breeding programs. Combining field data with genomic tools can provide opportunities to understand the genetic architecture of disease resistance, leading to new opportunities for disease control. In the current study, a genome-wide association study was performed to assess resistance to the Tilapia lake virus (TiLV), one of the biggest threats affecting Nile tilapia (Oreochromis niloticus); a key aquaculture species globally. A pond outbreak of TiLV in a pedigreed population of the GIFT strain was observed, with 950 fish classified as either survivor or mortality, and genotyped using a 65 K SNP array. A significant QTL of large effect was identified on chromosome Oni22. The average mortality rate of tilapia homozygous for the resistance allele at the most significant SNP (P value = 4.51E-10) was 11%, compared to 43% for tilapia homozygous for the susceptibility allele. Several candidate genes related to host response to viral infection were identified within this QTL, including lgals17, vps52, and trim29. These results provide a rare example of a major QTL affecting a trait of major importance to a farmed animal. Genetic markers from the QTL region have potential in marker-assisted selection to improve host resistance, providing a genetic solution to an infectious disease where few other control or mitigation options currently exist.
  4. Etherington GJ, Nash W, Ciezarek A, Mehta TK, Barria A, Peñaloza C, et al.
    BMC Genomics, 2022 Dec 15;23(1):832.
    PMID: 36522771 DOI: 10.1186/s12864-022-09065-8
    BACKGROUND: The Nile tilapia (Oreochromis niloticus) is the third most important freshwater fish for aquaculture. Its success is directly linked to continuous breeding efforts focusing on production traits such as growth rate and weight. Among those elite strains, the Genetically Improved Farmed Tilapia (GIFT) programme initiated by WorldFish is now distributed worldwide. To accelerate the development of the GIFT strain through genomic selection, a high-quality reference genome is necessary.

    RESULTS: Using a combination of short (10X Genomics) and long read (PacBio HiFi, PacBio CLR) sequencing and a genetic map for the GIFT strain, we generated a chromosome level genome assembly for the GIFT. Using genomes of two closely related species (O. mossambicus, O. aureus), we characterised the extent of introgression between these species and O. niloticus that has occurred during the breeding process. Over 11 Mb of O. mossambicus genomic material could be identified within the GIFT genome, including genes associated with immunity but also with traits of interest such as growth rate.

    CONCLUSION: Because of the breeding history of elite strains, current reference genomes might not be the most suitable to support further studies into the GIFT strain. We generated a chromosome level assembly of the GIFT strain, characterising its mixed origins, and the potential contributions of introgressed regions to selected traits.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links