Displaying all 6 publications

Abstract:
Sort:
  1. Patrick R, Dietrich U
    Ecohealth, 2016 12;13(4):808-812.
    PMID: 27650715
    In Oceania, a region challenged by rapid urbanisation and climate change, integrative frameworks are required to enable effective actions on health and sustainability. The Ecohealth approach provides a framework for practice that acknowledges human health is intrinsically linked to ecosystem health. This research communication reports on a study involving interviews with twenty-seven leading health and sustainability thinkers from Oceania and across the globe. In examining their ideas for action, the report presents the study findings in relation to the guiding principles of Ecohealth: systems thinking, transdisciplinarity, participation, sustainability, equity and knowledge-to-action. Implications for Ecohealth practitioners working in Oceania are considered.
  2. Coombs CM, Shields RY, Hunt EA, Lum YW, Sosnay PR, Perretta JS, et al.
    Acad Med, 2017 04;92(4):494-500.
    PMID: 27680320 DOI: 10.1097/ACM.0000000000001387
    PROBLEM: Because reported use of simulation in preclinical basic science courses is limited, the authors describe the design, implementation, and preliminary evaluation of a simulation-based clinical correlation curriculum in an anatomy course for first-year medical students at Perdana University Graduate School of Medicine (in collaboration with Johns Hopkins University School of Medicine).

    APPROACH: The simulation curriculum, with five weekly modules, was a component of a noncadaveric human anatomy course for three classes (n = 81 students) from September 2011 to November 2013. The modules were designed around major anatomical regions (thorax; abdomen and pelvis; lower extremities and back; upper extremities; and head and neck) and used various types of simulation (standardized patients, high-fidelity simulators, and task trainers). Several methods were used to evaluate the curriculum's efficacy, including comparing pre- versus posttest scores and comparing posttest scores against the score on 15 clinical correlation final exam questions.

    OUTCOMES: A total of 81 students (response rate: 100%) completed all pre- and posttests and consented to participate. Posttest scores suggest significant knowledge acquisition and better consistency of performance after participation in the curriculum. The comparison of performance on the posttests and final exam suggests that using simulation as an adjunctive pedagogy can lead to excellent short-term knowledge retention.

    NEXT STEPS: Simulation-based medical education may prove useful in preclinical basic science curricula. Next steps should be to validate the use of this approach, demonstrate cost-efficacy or the "return on investment" for educational and institutional leadership, and examine longer-term knowledge retention.

  3. Kamal RM, Abdull Razis AF, Mohd Sukri NS, Perimal EK, Ahmad H, Patrick R, et al.
    Molecules, 2022 Jan 19;27(3).
    PMID: 35163897 DOI: 10.3390/molecules27030624
    Neurodegenerative diseases (NDDs) and cardiovascular diseases (CVDs) are illnesses that affect the nervous system and heart, all of which are vital to the human body. To maintain health of the human body, vegetable diets serve as a preventive approach and particularly Brassica vegetables have been associated with lower risks of chronic diseases, especially NDDs and CVDs. Interestingly, glucosinolates (GLs) and isothiocyanates (ITCs) are phytochemicals that are mostly found in the Cruciferae family and they have been largely documented as antioxidants contributing to both cardio- and neuroprotective effects. The hydrolytic breakdown of GLs into ITCs such as sulforaphane (SFN), phenylethyl ITC (PEITC), moringin (MG), erucin (ER), and allyl ITC (AITC) has been recognized to exert significant effects with regards to cardio- and neuroprotection. From past in vivo and/or in vitro studies, those phytochemicals have displayed the ability to mitigate the adverse effects of reactive oxidation species (ROS), inflammation, and apoptosis, which are the primary causes of CVDs and NDDs. This review focuses on the protective effects of those GL-derived ITCs, featuring their beneficial effects and the mechanisms behind those effects in CVDs and NDDs.
  4. Sosnay PR, Siklosi KR, Van Goor F, Kaniecki K, Yu H, Sharma N, et al.
    Nat Genet, 2013 Oct;45(10):1160-7.
    PMID: 23974870 DOI: 10.1038/ng.2745
    Allelic heterogeneity in disease-causing genes presents a substantial challenge to the translation of genomic variation into clinical practice. Few of the almost 2,000 variants in the cystic fibrosis transmembrane conductance regulator gene CFTR have empirical evidence that they cause cystic fibrosis. To address this gap, we collected both genotype and phenotype data for 39,696 individuals with cystic fibrosis in registries and clinics in North America and Europe. In these individuals, 159 CFTR variants had an allele frequency of ł0.01%. These variants were evaluated for both clinical severity and functional consequence, with 127 (80%) meeting both clinical and functional criteria consistent with disease. Assessment of disease penetrance in 2,188 fathers of individuals with cystic fibrosis enabled assignment of 12 of the remaining 32 variants as neutral, whereas the other 20 variants remained of indeterminate effect. This study illustrates that sourcing data directly from well-phenotyped subjects can address the gap in our ability to interpret clinically relevant genomic variation.
  5. Lesmann H, Hustinx A, Moosa S, Klinkhammer H, Marchi E, Caro P, et al.
    Res Sq, 2024 Jun 10.
    PMID: 38903062 DOI: 10.21203/rs.3.rs-4438861/v1
    The most important factor that complicates the work of dysmorphologists is the significant phenotypic variability of the human face. Next-Generation Phenotyping (NGP) tools that assist clinicians with recognizing characteristic syndromic patterns are particularly challenged when confronted with patients from populations different from their training data. To that end, we systematically analyzed the impact of genetic ancestry on facial dysmorphism. For that purpose, we established the GestaltMatcher Database (GMDB) as a reference dataset for medical images of patients with rare genetic disorders from around the world. We collected 10,980 frontal facial images - more than a quarter previously unpublished - from 8,346 patients, representing 581 rare disorders. Although the predominant ancestry is still European (67%), data from underrepresented populations have been increased considerably via global collaborations (19% Asian and 7% African). This includes previously unpublished reports for more than 40% of the African patients. The NGP analysis on this diverse dataset revealed characteristic performance differences depending on the composition of training and test sets corresponding to genetic relatedness. For clinical use of NGP, incorporating non-European patients resulted in a profound enhancement of GestaltMatcher performance. The top-5 accuracy rate increased by +11.29%. Importantly, this improvement in delineating the correct disorder from a facial portrait was achieved without decreasing the performance on European patients. By design, GMDB complies with the FAIR principles by rendering the curated medical data findable, accessible, interoperable, and reusable. This means GMDB can also serve as data for training and benchmarking. In summary, our study on facial dysmorphism on a global sample revealed a considerable cross ancestral phenotypic variability confounding NGP that should be counteracted by international efforts for increasing data diversity. GMDB will serve as a vital reference database for clinicians and a transparent training set for advancing NGP technology.
  6. Lesmann H, Hustinx A, Moosa S, Klinkhammer H, Marchi E, Caro P, et al.
    medRxiv, 2024 May 21.
    PMID: 37503210 DOI: 10.1101/2023.06.06.23290887
    The most important factor that complicates the work of dysmorphologists is the significant phenotypic variability of the human face. Next-Generation Phenotyping (NGP) tools that assist clinicians with recognizing characteristic syndromic patterns are particularly challenged when confronted with patients from populations different from their training data. To that end, we systematically analyzed the impact of genetic ancestry on facial dysmorphism. For that purpose, we established the GestaltMatcher Database (GMDB) as a reference dataset for medical images of patients with rare genetic disorders from around the world. We collected 10,980 frontal facial images - more than a quarter previously unpublished - from 8,346 patients, representing 581 rare disorders. Although the predominant ancestry is still European (67%), data from underrepresented populations have been increased considerably via global collaborations (19% Asian and 7% African). This includes previously unpublished reports for more than 40% of the African patients. The NGP analysis on this diverse dataset revealed characteristic performance differences depending on the composition of training and test sets corresponding to genetic relatedness. For clinical use of NGP, incorporating non-European patients resulted in a profound enhancement of GestaltMatcher performance. The top-5 accuracy rate increased by +11.29%. Importantly, this improvement in delineating the correct disorder from a facial portrait was achieved without decreasing the performance on European patients. By design, GMDB complies with the FAIR principles by rendering the curated medical data findable, accessible, interoperable, and reusable. This means GMDB can also serve as data for training and benchmarking. In summary, our study on facial dysmorphism on a global sample revealed a considerable cross ancestral phenotypic variability confounding NGP that should be counteracted by international efforts for increasing data diversity. GMDB will serve as a vital reference database for clinicians and a transparent training set for advancing NGP technology.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links