Displaying all 3 publications

Abstract:
Sort:
  1. Lussiana T, Patoz A, Gindre C, Mourot L, Hébert-Losier K
    J Exp Biol, 2019 03 18;222(Pt 6).
    PMID: 30787136 DOI: 10.1242/jeb.192047
    A lower duty factor (DF) reflects a greater relative contribution of leg swing versus ground contact time during the running step. Increasing time on the ground has been reported in the scientific literature to both increase and decrease the energy cost (EC) of running, with DF reported to be highly variable in runners. As increasing running speed aligns running kinematics more closely with spring-mass model behaviours and re-use of elastic energy, we compared the centre of mass (COM) displacement and EC between runners with a low (DFlow) and high (DFhigh) duty factor at typical endurance running speeds. Forty well-trained runners were divided in two groups based on their mean DF measured across a range of speeds. EC was measured from 4 min treadmill runs at 10, 12 and 14 km h-1 using indirect calorimetry. Temporal characteristics and COM displacement data of the running step were recorded from 30 s treadmill runs at 10, 12, 14, 16 and 18 km h-1 Across speeds, DFlow exhibited more symmetrical patterns between braking and propulsion phases in terms of time and vertical COM displacement than DFhigh DFhigh limited global vertical COM displacements in favour of horizontal progression during ground contact. Despite these running kinematics differences, no significant difference in EC was observed between groups. Therefore, both DF strategies seem energetically efficient at endurance running speeds.
  2. Patoz A, Lussiana T, Gindre C, Hébert-Losier K
    Sports (Basel), 2019 Jun 17;7(6).
    PMID: 31212983 DOI: 10.3390/sports7060147
    Close to 90% of recreational runners rearfoot strike in a long-distance road race. This prevalence has been obtained from North American cohorts of runners. The prevalence of rearfoot strikers has not been extensively examined in an Asian population of recreational runners. Therefore, the aim of this study was to determine the prevalence of rearfoot, midfoot, and forefoot strikers during a long-distance road race in Asian recreational runners and compare this prevalence to reported values in the scientific literature. To do so, we classified the foot strike pattern of 950 recreational runners at the 10 km mark of the Singapore marathon (77% Asian field). We observed 71.1%, 16.6%, 1.7%, and 10.6% of rearfoot, midfoot, forefoot, and asymmetric strikers, respectively. Chi-squared tests revealed significant differences between our foot strike pattern distribution and those reported from North American cohorts (P < 0.001). Our foot strike pattern distribution was similar to one reported from elite half-marathon runners racing in Japan (Fisher exact test, P = 0.168). We conclude that the prevalence of rearfoot strikers is lower in Asian than North American recreational runners. Running research should consider and report ethnicity of participants given that ethnicity can potentially explain biomechanical differences in running patterns.
  3. Patoz A, Lussiana T, Breine B, Gindre C, Malatesta D, Hébert-Losier K
    Sports Biomech, 2022 Jul 04.
    PMID: 35787231 DOI: 10.1080/14763141.2022.2094825
    Duty factor (DF) and step frequency (SF) are key running pattern determinants. However, running patterns may change with speed if DF and SF changes are inconsistent across speeds. We examined whether the relative positioning of runners was consistent: 1) across five running speeds (10-18 km/h) for four temporal variables [DF, SF, and their subcomponents: contact (tc) and flight (tf) time]; and 2) across these four temporal variables at these five speeds. Three-dimensional whole-body kinematics were acquired from 52 runners, and deviations from the median for each variable (normalised to minimum-maximum values) were extracted. Across speeds for all variables, correlations on the relative positioning of individuals were high to very high for 2-4 km/h speed differences, and moderate to high for 6-8 km/h differences. Across variables for all speeds, correlations were low between DF-SF, very high between DF-tf, and low to high between DF-tc, SF-tc, and SF-tf. Hence, the consistency in running patterns decreased as speed differences increased, suggesting that running patterns be assessed using a range of speeds. Consistency in running patterns at a given speed was low between DF and SF, corroborating suggestions that using both variables can encapsulate the full running pattern spectrum.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links