Displaying all 11 publications

Abstract:
Sort:
  1. Sharzehan MAK, Sito H, Abdullah N, Alexiou A, Papadakis M, Jamal R, et al.
    Sci Rep, 2022 Nov 23;12(1):20149.
    PMID: 36418904 DOI: 10.1038/s41598-022-24398-w
    CYP2E1 encodes an enzyme that participates in the activation of several carcinogenic substances. Thus, numerous studies have investigated the association between CYP2E1 polymorphisms and colorectal cancer (CRC) risk, but inconclusive results have been obtained. We performed a meta-analysis to precisely evaluate the relationship of CYP2E1 rs2031920, rs3813867, and rs6413432 polymorphisms with the susceptibility to CRC. Scopus, Web of Science and PubMed databases were searched to identify eligible studies, and the association between the polymorphisms and CRC risk was then quantitatively synthesized using different genetic models. Eighteen studies with 23,598 subjects were selected for inclusion into the analysis. Significant association between rs2031920 and an increased CRC risk was observed in homozygous (OR = 1.496, 95% CI 1.177-1.901, P = 0.001), recessive (OR = 1.467, 95% CI  1.160-1.857, P = 0.001) and allele (OR = 1.162, 95% CI  1.001-1.349, P = 0.048) models. Significant association was not found for rs3813867 and rs6413432 (P > 0.05). In conclusion, our results suggest that rs2031920, but not rs3813867 and rs6413432, is associated with the risk of CRC.
  2. Wireko AA, Ohenewaa Tenkorang P, Fosuah Debrah A, Akin-Olugbemi T, Yarlagadda R, Mehta A, et al.
    Int J Surg, 2023 Mar 01;109(3):534-535.
    PMID: 36928287 DOI: 10.1097/JS9.0000000000000011
  3. Awuah WA, Tenkorang PO, Adebusoye FT, Ng JC, Wellington J, Abdul-Rahman T, et al.
    Postgrad Med J, 2023 Dec 21;100(1179):1-3.
    PMID: 37857514 DOI: 10.1093/postmj/qgad100
  4. Swaminathan N, Awuah WA, Bharadwaj HR, Roy S, Ferreira T, Adebusoye FT, et al.
    Health Sci Rep, 2024 May;7(5):e2075.
    PMID: 38690005 DOI: 10.1002/hsr2.2075
    BACKGROUND AND AIMS: Diabetic Foot Ulcers (DFUs) are a significant health concern, particularly in Low- and Middle-Income Countries (LMICs). This review explores key strategies for managing DFUs in LMICs, including integrating podiatry, endocrinology, and wound care services, educating patients, promoting self-care, and preventive measures to reduce amputation rates.

    METHODS: A comprehensive literature review was conducted, focusing on studies conducted in Low and Middle Income Countries to facilitate a qualitative analysis. The review examined the aetiology and risk factors to developing DFUs, clinical presentation, multidisciplinary management and evidence based interventions, challenges to the provision of care and future directions, all pertaining to DFUs in low and middle income countries.

    RESULTS: The aetiology and risk factors contributing to the development of DFUs are complex and multifaceted. Factors such as limited access to health care, inadequate diabetes management, and socioeconomic disparities significantly influence the incidence of DFUs. Clinical presentation varies, with patients often presenting at advanced stages of the disease due to delayed or missed diagnoses. Multidisciplinary management, incorporating podiatry, endocrinology, and wound care services, has exhibited substantial promise in enhancing patient outcomes. Evidence-based interventions, including offloading techniques, wound debridement, and the use of advanced wound dressings, have proven effective in promoting ulcer healing.

    CONCLUSION: The burden of DFUs in LMICs requires comprehensive strategies. Integrating podiatry, endocrinology, and wound care services, along with patient education and self-care practices, is essential for reducing amputations and improving patients' quality of life. Regular follow-up and early detection are vital for effective DFU management, emphasizing the need for ongoing research and investment in LMIC health care infrastructure. Embracing these multidisciplinary, patient-centered approaches can effectively address the challenge of DFUs in LMICs, leading to better patient outcomes and improved quality of life.

  5. Kehinde SA, Ore A, Olajide AT, Ajiboye EO, Papadakis M, Alexiou A, et al.
    Heliyon, 2024 Aug 30;10(16):e36056.
    PMID: 39224312 DOI: 10.1016/j.heliyon.2024.e36056
    The brain is an energy demanding organ, constituting about 20 % of the body's resting metabolic rate. An efficient energy metabolism is critical to neuronal functions. Glucose serves as the primary essential energy source for the adult brain and plays a critical role in supporting neural growth and development. Endocrine disrupting chemicals (EDCs) such as phthalates has been shown to have a negative impact on neurological functions. The impact of diisononyl phthalate (DiNP) on neural energy transduction using cellular energy metabolizing enzymes as indicators was examined. Over the course of 14 days, eighteen (18) albino rats divided into three groups (1,2 and 3) of six albino rats were given Tween-80/saline, 20 and 200 mg/kg body weight respectively. In the brain, we assessed histological changes as well as activities of selected enzymes of energy metabolism such as the glycolytic pathway, citric acid cycle and mitochondrial electron transport-linked complexes. Activities of the glycolytic and TCA cycle enzymes assayed were significantly decreased except citrate synthase activity with no statistically significant change following the administration of DiNP. Also, respiratory chain complexes (Complex I-IV) activities were significantly reduced when compared to control. DiNP exposure altered the histological integrity of various brain sections. These include degenerated Purkinje neurons, distortion of the granular layer and Purkinje cell layer. Data from this study indicated impaired brain energy metabolism via down-regulation of enzymes of cellular respiration of the glycolytic and oxidative phosphorylation pathways and altered brain histoarchitecture orchestrated by DiNP exposure.
  6. Awuah WA, Roy S, Tan JK, Adebusoye FT, Qiang Z, Ferreira T, et al.
    J Cell Mol Med, 2024 Apr;28(7):e18159.
    PMID: 38494861 DOI: 10.1111/jcmm.18159
    Gastric cancer (GC) represents a major global health burden and is responsible for a significant number of cancer-related fatalities. Its complex nature, characterized by heterogeneity and aggressive behaviour, poses considerable challenges for effective diagnosis and treatment. Single-cell RNA sequencing (scRNA-seq) has emerged as an important technique, offering unprecedented precision and depth in gene expression profiling at the cellular level. By facilitating the identification of distinct cell populations, rare cells and dynamic transcriptional changes within GC, scRNA-seq has yielded valuable insights into tumour progression and potential therapeutic targets. Moreover, this technology has significantly improved our comprehension of the tumour microenvironment (TME) and its intricate interplay with immune cells, thereby opening avenues for targeted therapeutic strategies. Nonetheless, certain obstacles, including tumour heterogeneity and technical limitations, persist in the field. Current endeavours are dedicated to refining protocols and computational tools to surmount these challenges. In this narrative review, we explore the significance of scRNA-seq in GC, emphasizing its advantages, challenges and potential applications in unravelling tumour heterogeneity and identifying promising therapeutic targets. Additionally, we discuss recent developments, ongoing efforts to overcome these challenges, and future prospects. Although further enhancements are required, scRNA-seq has already provided valuable insights into GC and holds promise for advancing biomedical research and clinical practice.
  7. Hashemi M, Nadafzadeh N, Imani MH, Rajabi R, Ziaolhagh S, Bayanzadeh SD, et al.
    Cell Commun Signal, 2023 Feb 09;21(1):32.
    PMID: 36759819 DOI: 10.1186/s12964-023-01053-z
    Autophagy is an evolutionarily conserved process that plays a role in regulating homeostasis under physiological conditions. However, dysregulation of autophagy is observed in the development of human diseases, especially cancer. Autophagy has reciprocal functions in cancer and may be responsible for either survival or death. Hepatocellular carcinoma (HCC) is one of the most lethal and common malignancies of the liver, and smoking, infection, and alcohol consumption can lead to its development. Genetic mutations and alterations in molecular processes can exacerbate the progression of HCC. The function of autophagy in HCC is controversial and may be both tumor suppressive and tumor promoting. Activation of autophagy may affect apoptosis in HCC and is a regulator of proliferation and glucose metabolism. Induction of autophagy may promote tumor metastasis via induction of EMT. In addition, autophagy is a regulator of stem cell formation in HCC, and pro-survival autophagy leads to cancer cell resistance to chemotherapy and radiotherapy. Targeting autophagy impairs growth and metastasis in HCC and improves tumor cell response to therapy. Of note, a large number of signaling pathways such as STAT3, Wnt, miRNAs, lncRNAs, and circRNAs regulate autophagy in HCC. Moreover, regulation of autophagy (induction or inhibition) by antitumor agents could be suggested for effective treatment of HCC. In this paper, we comprehensively review the role and mechanisms of autophagy in HCC and discuss the potential benefit of targeting this process in the treatment of the cancer. Video Abstract.
  8. Hashemi M, Sabouni E, Rahmanian P, Entezari M, Mojtabavi M, Raei B, et al.
    Cell Mol Biol Lett, 2023 Apr 21;28(1):33.
    PMID: 37085753 DOI: 10.1186/s11658-023-00438-9
    Hepatocellular carcinoma (HCC) is considered one of the greatest challenges to human life and is the most common form of liver cancer. Treatment of HCC depends on chemotherapy, radiotherapy, surgery, and immunotherapy, all of which have their own drawbacks, and patients may develop resistance to these therapies due to the aggressive behavior of HCC cells. New and effective therapies for HCC can be developed by targeting molecular signaling pathways. The expression of signal transducer and activator of transcription 3 (STAT3) in human cancer cells changes, and during cancer progression, the expression tends to increase. After induction of STAT3 signaling by growth factors and cytokines, STAT3 is phosphorylated and translocated to the nucleus to regulate cancer progression. The concept of the current review revolves around the expression and phosphorylation status of STAT3 in HCC, and studies show that the expression of STAT3 is high during the progression of HCC. This review addresses the function of STAT3 as an oncogenic factor in HCC, as STAT3 is able to prevent apoptosis and thus promote the progression of HCC. Moreover, STAT3 regulates both survival- and death-inducing autophagy in HCC and promotes cancer metastasis by inducing the epithelial-mesenchymal transition (EMT). In addition, upregulation of STAT3 is associated with the occurrence of chemoresistance and radioresistance in HCC. Specifically, non-protein-coding transcripts regulate STAT3 signaling in HCC, and their inhibition by antitumor agents may affect tumor progression. In this review, all these topics are discussed in detail to provide further insight into the role of STAT3 in tumorigenesis, treatment resistance, and pharmacological regulation of HCC.
  9. Awuah WA, Huang H, Kalmanovich J, Mehta A, Mikhailova T, Ng JC, et al.
    Medicine (Baltimore), 2023 Aug 11;102(32):e34614.
    PMID: 37565922 DOI: 10.1097/MD.0000000000034614
    The circadian rhythm (CR) is a fundamental biological process regulated by the Earth's rotation and solar cycles. It plays a critical role in various bodily functions, and its dysregulation can have systemic effects. These effects impact metabolism, redox homeostasis, cell cycle regulation, gut microbiota, cognition, and immune response. Immune mediators, cycle proteins, and hormones exhibit circadian oscillations, supporting optimal immune function and defence against pathogens. Sleep deprivation and disruptions challenge the regulatory mechanisms, making immune responses vulnerable. Altered CR pathways have been implicated in diseases such as diabetes, neurological conditions, and systemic autoimmune diseases (SADs). SADs involve abnormal immune responses to self-antigens, with genetic and environmental factors disrupting self-tolerance and contributing to conditions like Systemic Lupus Erythematosus, Rheumatoid Arthritis, and Inflammatory Myositis. Dysregulated CR may lead to increased production of pro-inflammatory cytokines, contributing to the systemic responses observed in SADs. Sleep disturbances significantly impact the quality of life of patients with SADs; however, they are often overlooked. The relationship between sleep and autoimmune conditions, whether causal or consequential to CR dysregulation, remains unclear. Chrono-immunology investigates the role of CR in immunity, offering potential for targeted therapies in autoimmune conditions. This paper provides an overview of the connections between sleep and autoimmune conditions, highlighting the importance of recognizing sleep disturbances in SADs and the need for further research into the complex relationship between the CR and autoimmune diseases.
  10. Abdul-Rahman T, Awuah WA, Mikhailova T, Kalmanovich J, Mehta A, Ng JC, et al.
    Biofactors, 2024 Jan 16.
    PMID: 38226733 DOI: 10.1002/biof.2039
    Alzheimer's disease (AD) constitutes a multifactorial neurodegenerative pathology characterized by cognitive deterioration, personality alterations, and behavioral shifts. The ongoing brain impairment process poses significant challenges for therapeutic interventions due to activating multiple neurotoxic pathways. Current pharmacological interventions have shown limited efficacy and are associated with significant side effects. Approaches focusing on the early interference with disease pathways, before activation of broad neurotoxic processes, could be promising to slow down symptomatic progression of the disease. Curcumin-an integral component of traditional medicine in numerous cultures worldwide-has garnered interest as a promising AD treatment. Current research indicates that curcumin may exhibit therapeutic potential in neurodegenerative pathologies, attributed to its potent anti-inflammatory and antioxidant properties. Additionally, curcumin and its derivatives have demonstrated an ability to modulate cellular pathways via epigenetic mechanisms. This article aims to raise awareness of the neuroprotective properties of curcuminoids that could provide therapeutic benefits in AD. The paper provides a comprehensive overview of the neuroprotective efficacy of curcumin against signaling pathways that could be involved in AD and summarizes recent evidence of the biological efficiency of curcumins in vivo.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links