Displaying all 3 publications

Abstract:
Sort:
  1. Loh GOK, Wong EYL, Tan YTF, Lee YL, Pang LH, Chin MC, et al.
    PMID: 32905988 DOI: 10.1016/j.jchromb.2020.122337
    A simple, rapid, sensitive, and reproducible liquid chromatography-tandem mass spectrometry method was developed to determine sitagliptin in human plasma. Diphenhydramine HCl was used as internal standard (IS). The chromatographic separation was achieved using Agilent Poroshell 120 EC-C18 - Fast LC column (100 × 2.1mmID, 2.7) fitted with UHPLC Guard Poroshell 120 EC-C18 (5 × 2.1mmID, 2.7 µm). The mobile phase consisted of 0.1% v/v formic acid and methanol (45:55, v/v) run at a flow rate of 0.45 mL/min at 30 °C. Methanol produced relatively cleaner plasma sample as deproteinization agent. Polytetrafluoroethylene membrane was preferred over nylon membrane as the former produced clear plasma samples. The standard calibration curve was linear over the concentration range of 5-500.03 ng/mL. The within-run precision was 0.53-7.12% and accuracy 87.09-105.05%. The between-run precision was 4.74-11.68% and accuracy 95.02-97.36%. The extended run precision was 3.60-6.88% and accuracy 93.18-95.82%. The recovery of analyte and IS was consistent. Sitagliptin in plasma was stable at benchtop (short term) for 24 h, in autosampler tray for 48 h, in instrumentation room for 48 h (post-preparative), after 7 freeze-thaw cycles (-20 ± 10 °C), and 62 days in the freezer (-20 ± 10 °C). Both sitagliptin (analyte) and IS stock solutions were stable for 62 days when kept at room temperature (25 ± 4 °C) and in chiller (2-8 °C). The validated method was successfully applied to a bioequivalence study of two sitagliptin formulations involving 26 healthy Malaysian volunteers.
  2. Cheah KY, Mah KY, Pang LH, Ng SM, Wong JW, Tan SS, et al.
    BMC Pharmacol Toxicol, 2020 06 23;21(1):45.
    PMID: 32576287 DOI: 10.1186/s40360-020-00416-3
    BACKGROUND: Paracetamol/Orphenadrine is a fixed dose combination containing 35 mg orphenadrine and 450 mg paracetamol. It has analgesic and muscle relaxant properties and is widely available as generics. This study is conducted to investigate the relative bioavailability and bioequivalence between one fixed dose paracetamol/orphenadrine combination test preparation and one fixed dose paracetamol/orphenadrine combination reference preparation in healthy volunteers under fasted condition for marketing authorization in Malaysia.

    METHOD: This is a single-center, single-dose, open-label, randomized, 2-treatment, 2-sequence and 2-period crossover study with a washout period of 7 days. Paracetamol/Orphenadrine tablets were administered after a 10-h fast. Blood samples for pharmacokinetic analysis were collected at scheduled time intervals prior to and up to 72 h after dosing. Blood samples were centrifuged, and separated plasma were kept frozen (- 15 °C to - 25 °C) until analysis. Plasma concentrations of orphenadrine and paracetamol were quantified using liquid-chromatography-tandem mass spectrometer using diphenhydramine as internal standard. The pharmacokinetic parameters AUC0-∞, AUC0-t and Cmax were determined using plasma concentration time profile for both preparations. Bioequivalence was assessed according to the ASEAN guideline acceptance criteria for bioequivalence which is the 90% confidence intervals of AUC0-∞, AUC0-t and Cmax ratio must be within the range of 80.00-125.00%.

    RESULTS: There were 28 healthy subjects enrolled, and 27 subjects completed this trial. There were no significant differences observed between the AUC0-∞, AUC0-t and Cmax of both test and reference preparations in fasted condition. The 90% confidence intervals for the ratio of AUC0-t (100.92-111.27%), AUC0-∞ (96.94-108.08%) and Cmax (100.11-112.50%) for orphenadrine (n = 25); and AUC0-t (94.29-101.83%), AUC0-∞ (94.77-101.68%) and Cmax (87.12-101.20%) for paracetamol (n = 27) for test preparation over reference preparation were all within acceptable bioequivalence range of 80.00-125.00%.

    CONCLUSION: The test preparation is bioequivalent to the reference preparation and can be used interchangeably.

    TRIAL REGISTRATION: NMRR- 17-1266-36,001; registered and approved on 12 September 2017.

  3. Loh GOK, Wong EYL, Goh CZ, Tan YTF, Lee YL, Pang LH, et al.
    Ann Med, 2023;55(2):2270502.
    PMID: 37857359 DOI: 10.1080/07853890.2023.2270502
    The study aimed to develop a sensitive and high-throughput liquid chromatography coupled with tandem mass spectrometry method to quantify concentrations of tramadol and paracetamol simultaneously in human plasma. Sample preparation involved single-step protein precipitation using methanol and two deuterated internal standards, tramadol D6 and paracetamol D4. Agilent Poroshell 120 EC-C18 (100 × 2.1 mm, 2.1 µm) analytical column was employed to achieve chromatographic separation. Detection was in positive ion multiple reaction monitoring mode. A tailing factor (Tf) of <1.2, separation factor (K prime) of >1.5 from the column dead time and signal-to-noise (S/N) ratio >10, were obtained for analytes and internal standards. The standard curve was linear over the concentration range of 2.5-500.00 ng/mL for tramadol and 0.025-20.00 μg/mL for paracetamol. A small injection volume of 1 µL, low flow rate of 440 µL/min and short analysis time of 3.5 min reduced the solvent consumption, analysis cost and system contamination. The results of method validation parameters fulfilled the acceptance criteria of bioanalytical guidelines. The method was successfully applied to a bioequivalence study of fixed-dose combination products of tramadol and paracetamol in Malaysian healthy subjects.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links