Displaying all 3 publications

Abstract:
Sort:
  1. Manickam S, Sivakumar K, Pang CH
    Ultrason Sonochem, 2020 Dec;69:105258.
    PMID: 32702637 DOI: 10.1016/j.ultsonch.2020.105258
    O/W nanoemulsions are isotropic colloidal systems constituted of oil droplets dispersed in continuous aqueous media and stabilised by surfactant molecules. Nanoemulsions hold applications in more widespread technological domains, more crucially in the pharmaceutical industry. Innovative nanoemulsion-based drug delivery system has been suggested as a powerful alternative strategy through the useful means of encapsulating, protecting, and delivering the poorly water-soluble bioactive components. Consequently, there is a need to generate an emulsion with small and consistent droplets. Diverse studies acknowledged that ultrasonic cavitation is a feasible and energy-efficient method in making pharmaceutical-grade nanoemulsions. This method offers more notable improvements in terms of stability with a lower Ostwald ripening rate. Meanwhile, a microstructured reactor, for instance, microchannel, has further been realised as an innovative technology that facilitates combinatorial approaches with the acceleration of reaction, analysis, and measurement. The recent breakthrough that has been achieved is the controlled generation of fine and monodispersed multiple emulsions through microstructured reactors. The small inner dimensions of microchannel display properties such as short diffusion paths and high specific interfacial areas, which increase the mass and heat transfer rates. Hence, the combination of ultrasonic cavitation with microstructures (microchannel) provides process intensification of creating a smaller monodispersed nanoemulsion system. This investigation is vital as it will then facilitate the creation of new nanoemulsion based drug delivery system continuously. Following this, the fabrication of microchannel and setup of its combination with ultrasound was conducted in the generation of O/W nanoemulsion, as well as optimisation to analyse the effect of varied operating parameters on the mean droplet diameter and dispersity of the nanoemulsion generated, besides monitoring the stability of the nanoemulsion. Scanning transmission electron microscopy (STEM) images were also carried out for the droplet size measurements. In short, the outcomes of this study are encouraging, which necessitates further investigations to be carried out to advance a better understanding of coupling microchannel with ultrasound to produce pharmaceutical-grade nanoemulsions.
  2. Tan WK, Cheah SC, Parthasarathy S, Rajesh RP, Pang CH, Manickam S
    Chemosphere, 2021 Jul;274:129702.
    PMID: 33529956 DOI: 10.1016/j.chemosphere.2021.129702
    This investigation explores the efficacy of employing ultrasonic cavitation and coupling it with advanced oxidation processes (hydrogen peroxide and Fenton's reagent) for reducing the levels of total ammonia nitrogen in fish pond water containing Tilapia fishes. Ultrasonic cavitation is a phenomenon where the formation, growth and collapse of vaporous bubbles occur in a liquid medium producing highly reactive free radicals. Ultrasonic probe system (20 kHz with 750 W and 1000 W) was used to induce cavitation. Besides, to intensify the process, ultrasonic cavitation was coupled with hydrogen peroxide and Fenton's reagent. Using SERA colour indicator test kits, the levels of ammonium, nitrite and carbonate hardness were measured. The results obtained from this study clearly show that the advanced oxidation processes are more efficient in reducing the ammonium and nitrite levels in fish pond water than using ultrasound alone. The pH and carbonate hardness levels were not affected significantly by ultrasonic cavitation. The optimal treatment time and ultrasound power to treat the water samples were also established. Energy efficiency and cost analysis of this treatment have also been presented, indicating that ultrasonic cavitation coupled with hydrogen peroxide appears to be a promising technique for reducing total ammonia nitrogen levels in the fish pond water.
  3. Yan Y, Shin WI, Pang YX, Meng Y, Lai J, You C, et al.
    PMID: 32235575 DOI: 10.3390/ijerph17072323
    The recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, previously known as 2019-nCoV) outbreak has engulfed an unprepared world amidst a festive season. The zoonotic SARS-CoV-2, believed to have originated from infected bats, is the seventh member of enveloped RNA coronavirus. Specifically, the overall genome sequence of the SARS-CoV-2 is 96.2% identical to that of bat coronavirus termed BatCoV RaTG13. Although the current mortality rate of 2% is significantly lower than that of SARS (9.6%) and Middle East respiratory syndrome (MERS) (35%), SARS-CoV-2 is highly contagious and transmissible from human to human with an incubation period of up to 24 days. Some statistical studies have shown that, on average, one infected patient may lead to a subsequent 5.7 confirmed cases. Since the first reported case of coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 on December 1, 2019, in Wuhan, China, there has been a total of 60,412 confirmed cases with 1370 fatalities reported in 25 different countries as of February 13, 2020. The outbreak has led to severe impacts on social health and the economy at various levels. This paper is a review of the significant, continuous global effort that was made to respond to the outbreak in the first 75 days. Although no vaccines have been discovered yet, a series of containment measures have been implemented by various governments, especially in China, in the effort to prevent further outbreak, whilst various medical treatment approaches have been used to successfully treat infected patients. On the basis of current studies, it would appear that the combined antiviral treatment has shown the highest success rate. This review aims to critically summarize the most recent advances in understanding the coronavirus, as well as the strategies in prevention and treatment.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links