Displaying all 4 publications

Abstract:
Sort:
  1. Othman NW, Barron AB, Cooper PD
    Insects, 2023 May 25;14(6).
    PMID: 37367311 DOI: 10.3390/insects14060495
    The salivary gland of the black field cricket, Teleogryllus commodus Walker changed size between being starved and fed. Crickets without access to food for 72 h showed a reduction in both wet and dry mass of the glands compared with the glands from continuously fed animals at 72 h. Glands returned to size following ingestion within 10 min. Salivary glands of starved crickets (72 h) were incubated in saline containing either serotonin (5-HT) or dopamine (DA). Glands increased to pre-starvation size after 1 h incubation in situ with either 10-4 moles L-1 5-HT or 10-4 moles L-1 DA, although lower concentrations (10-5 moles L-1) did not affect gland size. From immunohistochemistry, amines appeared to shift from zymogen cells during starvation to parietal cells following feeding. High-performance liquid chromatography showed that serotonin concentration is higher than dopamine in the salivary gland removed from starved and fed crickets, but the quantity of these compounds was not dependent upon feeding state; the amine quantities increased as gland size increased. Further work is necessary to determine what might be the stimulus for gland growth and if dopamine and serotonin play a role in the stimulation of salivary gland growth after a period of starvation.
  2. Yusoff N, Abd Ghani I, Othman NW, Aizat WM, Hassan M
    Insects, 2021 Jan 27;12(2).
    PMID: 33513706 DOI: 10.3390/insects12020109
    The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is the most important pest of cruciferous vegetables worldwide. In this study, we evaluated the properties of selected farnesyl derivative compounds against P. xylostella. The toxicity and sublethal concentration (LC50) of farnesyl acetate, farnesyl acetone, farnesyl bromide, farnesyl chloride, and hexahydrofarnesyl acetone were investigated for 96 h. The leaf-dip bioassays showed that farnesyl acetate had a high level of toxicity against P. xylostella compared to other tested farnesyl derivatives. The LC50 value was 56.41 mg/L on the second-instar larvae of P. xylostella. Then, the sublethal effects of farnesyl acetate on biological parameters of P. xylostella were assessed. Compared to the control group, the sublethal concentration of farnesyl acetate decreased pupation and emergence rates, pupal weight, fecundity, egg hatching rate, female ratio, and oviposition period. Furthermore, the developmental time of P. xylostella was extended after being exposed to farnesyl acetate. Moreover, the application of farnesyl acetate on P. xylostella induced morphogenetic abnormalities in larval-pupal intermediates, adults that emerged with twisted wings, or complete adults that could not emerge from the cocoon. These results suggested that farnesyl acetate was highly effective against P. xylostella. The sublethal concentration of farnesyl acetate could reduce the population of P. xylostella by increasing abnormal pupal and adults, and by delaying its development period.
  3. Yusof S, Othman NW, Dzomir AZM, Mohammed MA, Aman-Zuki A, Yaakop S
    Trop Life Sci Res, 2024 Jul;35(2):289-307.
    PMID: 39234473 DOI: 10.21315/tlsr2024.35.2.14
    Bactrocera dorsalis (Hendel) is a major quarantine pest species infesting most of the tropical fruits. Its infestation had significantly reduced and disrupted the export market trade, thus, very crucial to be controlled during the preharvest and postharvest. One of the most sustainable control methods is by using the radiation technique to reduce the pest population, thus curbing the spread of this pest to new geographical areas. The objective of this study was to measure the nucleotide changes in B. dorsalis (larval, pupal and adult stages) which had been irradiated with 50 to 400 Gray, using Gamma Cell Biobeam GM8000 irradiator with Cesium-137 source at the Malaysian Nuclear Agency, Selangor, Malaysia. Data from the treated samples (with and without morphological changes) were analysed using cytochrome oxidase subunit I (COI). The alignment of 59 sequences resulted in 0.92% variables with only four characters that were parsimony informative, and six sites (30, 60, 234, 282, 483 and 589) which had nucleotide changes, but had not been translated to another protein. Low polymorphism was presented on the sample groups, with only four haplotypes, but with high diversity value (Hd) = 0.5885. The phylogeny trees formed soft polytomy in both trees [neighbour joining (NJ) and maximum parsimony (MP)] presenting a mixture of individuals but did not show any significant difference between treatments. This finding concluded that low mutation had occurred on the treated B. dorsalis and this information is very valuable in getting new insight on the survival of B. dorsalis in the horticulture industry.
  4. Rahmat NL, Zifruddin AN, Yusoff NS, Sulaiman S, Zainal Abidin CMR, Othman NW, et al.
    Comput Biol Chem, 2024 Oct;112:108176.
    PMID: 39181100 DOI: 10.1016/j.compbiolchem.2024.108176
    Metisa plana is a widespread insect pest infesting oil palm plantations in Malaysia. Farnesyl acetate (FA), a juvenile hormone analogue, has been reported to exert in vitro and in vivo insecticidal activity against other insect pests. However, the insecticidal mechanism of FA on M. plana remains unclear. Therefore, this study aims to elucidate responsive genes in M. plana in response to FA treatment. The RNA-sequencing reads of FA-treated M. plana were de novo-assembled with existing raw reads from non-treated third instar larvae, and 55,807 transcripts were functionally annotated to multiple protein databases. Several insecticide detoxification-related genes were differentially regulated among the 321 differentially expressed transcripts. Cytochrome P450 monooxygenase, carboxylesterase, and ATP-binding cassette protein were upregulated, while peptidoglycan recognition protein was downregulated. Innate immune response genes, such as glutathione S-transferases, acetylcholinesterase, and heat shock protein, were also identified in the transcriptome. The findings signify that changes occurred in the insect's receptor and signaling, metabolic detoxification of insecticides, and immune responses upon FA treatment on M. plana. This valuable information on FA toxicity may be used to formulate more effective biorational insecticides for better M. plana pest management strategies in oil palm plantations.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links