Displaying publications 1 - 20 of 23 in total

Abstract:
Sort:
  1. Afzal M, Singh J, Ong SK
    Med J Malaysia, 1983 Mar;38(1):47-50.
    PMID: 6633336
    Thanatophoric dwarfism is a severe form of neonatal shortlimbed skeletal dysplasia. Most infants are stillborn or die soon after birth. This disorder has well defined radiological features which distinguish it from the other forms of neonatal dwarfism. We report two cases where short limbs were detected on sonography and a diagnosis was made on antenatal radiographs and fetography.
  2. Ong SK, Foo J, Wong WP, Yusof K
    Med J Malaysia, 1978 Mar;32(3):206-11.
    PMID: 683043
  3. Ahmed U, Anwar A, Ong SK, Anwar A, Khan NA
    Med Res Rev, 2021 Sep 02.
    PMID: 34472107 DOI: 10.1002/med.21851
    Acanthamoeba is a genus of free-living amoebae, pervasively found in the environment. Most of its pathogenic species are the causative agent of sight-threatening Acanthamoeba keratitis and fatal granulomatous amoebic encephalitis. Despite the advancements in the field of chemotherapy, treating Acanthamoeba infections is still challenging due to incomplete knowledge of the complicated pathophysiology. In case of infection, the treatment regimen for the patients is often ineffective due to delayed diagnosis, poor specificity, and side-effects. Besides the resistance of Acanthamoeba cysts to most of the drugs, the recurrence of infection further complicates the recovery. Thus, it is necessary to develop an effective treatment which can eradicate these rare, but serious infections. Based on various computational and in vitro studies, it has been established that the synthetic scaffolds such as heterocyclic compounds may act as potential drug leads for the development of antiamoebic drugs. In this review, we report different classes of synthetic compounds especially heterocyclic compounds which have shown promising results against Acanthamoeba. Moreover, the antiamoebic activities of synthetic compounds with their possible mode of actions against Acanthamoeba, have been summarized and discussed in this review.
  4. Mandary MB, Masomian M, Ong SK, Poh CL
    Viruses, 2020 Jun 17;12(6).
    PMID: 32560288 DOI: 10.3390/v12060651
    Viral plaque morphologies in human cell lines are markers for growth capability and they have been used to assess the viral fitness and selection of attenuated mutants for live-attenuated vaccine development. In this study, we investigate whether the naturally occurring plaque size variation reflects the virulence of the variants of EV-A71. Variants of two different plaque sizes (big and small) from EV-A71 sub-genotype B4 strain 41 were characterized. The plaque variants displayed different in vitro growth kinetics compared to the parental wild type. The plaque variants showed specific mutations being present in each variant strain. The big plaque variants showed four mutations I97L, N104S, S246P and N282D in the VP1 while the small plaque variants showed I97T, N237T and T292A in the VP1. No other mutations were detected in the whole genome of the two variants. The variants showed stable homogenous small plaques and big plaques, respectively, when re-infected in rhabdomyosarcoma (RD) and Vero cells. The parental strain showed faster growth kinetics and had higher viral RNA copy number than both the big and small plaque variants. Homology modelling shows that both plaque variants have differences in the structure of the VP1 protein due to the presence of unique spontaneous mutations found in each plaque variant This study suggests that the EV-A71 sub-genotype B4 strain 41 has at least two variants with different plaque morphologies. These differences were likely due to the presence of spontaneous mutations that are unique to each of the plaque variants. The ability to maintain the respective plaque morphology upon passaging indicates the presence of quasi-species in the parental population.
  5. Abd-Aziz N, Lee MF, Ong SK, Poh CL
    Virology, 2024 Jan;589:109941.
    PMID: 37984152 DOI: 10.1016/j.virol.2023.109941
    The hand, food, and mouth disease (HFMD) is primarily caused by Enterovirus A71 (EV-A71). EV-A71 outbreaks in the Asia Pacific have been associated with severe neurological disease and high fatalities. Currently, there are no FDA-approved antivirals for the treatment of EV-A71 infections. In this study, the SP81 peptide, derived from the VP1 capsid protein of EV-A71 was shown to be a promising antiviral candidate for the treatment of EV-A71 infections. SP81 peptide was non-toxic to RD cells up to 45 μM, with a half-maximal cytotoxic concentration (CC50) of 90.32 μM. SP81 peptide exerted antiviral effects during the pre- and post-infection stages with 50% inhibitory concentrations (IC50) of 4.529 μM and 1.192 μM, respectively. Direct virus inactivation of EV-A71 by the SP81 peptide was also observed with an IC50 of 8.076 μM. Additionally, the SP81 peptide exhibited direct virus inactivation of EV-A71 at 95% upon the addition of the SP81 peptide within 5 min. This study showed that the SP81 peptide exhibited significant inhibition of EV-A71 and could serve as a promising antiviral agent for further clinical development against EV-A71 infections.
  6. Karim SM, Ratnam SS, Hutabarat H, Hanafiah J, Simanjuntak P, Teoh SK, et al.
    Ann Acad Med Singap, 1982 Oct;11(4):508-12.
    PMID: 7165272
    2a 2b dihomo 15(S) 15 methyl PGF2 alpha methyl ester (dihomo 15 me PGF2 alpha) in intramuscular doses of 0.5 mg 8 hourly was used in 631 patients with abnormal intrauterine pregnancy comprising 282 cases of intrauterine fetal death, 233 cases of missed abortion, 34 and 82 cases respectively anencephalic and molar pregnancies. The study was carried out as a collaborative project between the University Departments of Obstetrics and Gynaecology in Singapore (Singapore), Medan (Indonesia) and Kuala Lumpur (Malaysia) during the period June 1974 and November 1979. Six hundred patients (95.1%) aborted or delivered in a mean time of 11.3 hours (S.D. +/- 7.0) with an average of 1.8 injections of the prostaglandin analogue per patient. Side effects included vomiting (23.6%; mean 0.45 episodes per patient), diarrhoea (44.4%; mean 1.00 episode per patient), cold and shivering (11.9%) and pyrexia (12.4%). One patient sustained a cervical laceration which did not require repair. There were no complications.
  7. Ali SM, Siddiqui R, Ong SK, Shah MR, Anwar A, Heard PJ, et al.
    Appl Microbiol Biotechnol, 2017 Jan;101(1):253-286.
    PMID: 27743045 DOI: 10.1007/s00253-016-7872-2
    Infectious diseases remain a significant threat to human health, contributing to more than 17 million deaths, annually. With the worsening trends of drug resistance, there is a need for newer and more powerful antimicrobial agents. We hypothesized that animals living in polluted environments are potential sources of antimicrobials. Under polluted milieus, organisms such as cockroaches encounter different types of microbes, including superbugs. Such creatures survive the onslaught of superbugs and are able to ward off disease by producing antimicrobial substances. Here, we characterized antibacterial properties in extracts of various body organs of cockroaches (Periplaneta americana) and showed potent antibacterial activity in crude brain extract against methicillin-resistant Staphylococcus aureus and neuropathogenic Escherichia coli K1. The size-exclusion spin columns revealed that the active compound(s) are less than 10 kDa in molecular mass. Using cytotoxicity assays, it was observed that pre-treatment of bacteria with lysates inhibited bacteria-mediated host cell cytotoxicity. Using spectra obtained with LC-MS on Agilent 1290 infinity liquid chromatograph, coupled with an Agilent 6460 triple quadruple mass spectrometer, tissues lysates were analysed. Among hundreds of compounds, only a few homologous compounds were identified that contained the isoquinoline group, chromene derivatives, thiazine groups, imidazoles, pyrrole-containing analogs, sulfonamides, furanones, and flavanones and known to possess broad-spectrum antimicrobial properties and anti-inflammatory, anti-tumour, and analgesic properties. Further identification, characterization, and functional studies using individual compounds can act as a breakthrough in developing novel therapeutics against various pathogens including superbugs.
  8. Yee PTI, Mohamed RAH, Ong SK, Tan KO, Poh CL
    Virus Res, 2017 06 15;238:243-252.
    PMID: 28705680 DOI: 10.1016/j.virusres.2017.07.010
    One of the leading causes of the hand, foot and mouth disease (HFMD) is Enterovirus 71 (EV-A71), displaying symptoms such as fever and ulcers in children but some strains can produce cardiopulmonary oedema which leads to death. There is no FDA-approved vaccine for prevention of severe HFMD. The molecular determinants of virulence for EV-A71 are unclear. It could be a single or a combination of amino acids that determines virulence in different EV-A71 genotype/sub-genotypes. Several EV-A71 strains bearing single nucleotide (nt) mutations were constructed and the contribution of each mutation to virulence was evaluated. The nt(s) that contributed to significant reduction in virulence in vitro were selected and each mutation was introduced separately into the genome to construct the multiply mutated EV-A71 strain (MMS) which carried six substitutions of nt(s) at the 5'-NTR (U700C), VP1-145 (E to G), VP1-98E, VP1-244K and G64R in the vaccine seed strain that had a partial deletion within the 5'-NTR region (nt. 475-485) of Δ11bp. In comparison to the wild type strain, the MMS showed low virulence as it produced very low RNA copy number, plaque count, VP1 and had 105-fold higher TCID50, indicative of a promising LAV candidate that should be further evaluated in vivo.
  9. Ashraf MI, Ong SK, Mujawar S, Pawar S, More P, Paul S, et al.
    Sci Rep, 2018 04 27;8(1):6669.
    PMID: 29703908 DOI: 10.1038/s41598-018-25042-2
    Identifying effective drug targets, with little or no side effects, remains an ever challenging task. A potential pitfall of failing to uncover the correct drug targets, due to side effect of pleiotropic genes, might lead the potential drugs to be illicit and withdrawn. Simplifying disease complexity, for the investigation of the mechanistic aspects and identification of effective drug targets, have been done through several approaches of protein interactome analysis. Of these, centrality measures have always gained importance in identifying candidate drug targets. Here, we put forward an integrated method of analysing a complex network of cancer and depict the importance of k-core, functional connectivity and centrality (KFC) for identifying effective drug targets. Essentially, we have extracted the proteins involved in the pathways leading to cancer from the pathway databases which enlist real experimental datasets. The interactions between these proteins were mapped to build an interactome. Integrative analyses of the interactome enabled us to unearth plausible reasons for drugs being rendered withdrawn, thereby giving future scope to pharmaceutical industries to potentially avoid them (e.g. ESR1, HDAC2, F2, PLG, PPARA, RXRA, etc). Based upon our KFC criteria, we have shortlisted ten proteins (GRB2, FYN, PIK3R1, CBL, JAK2, LCK, LYN, SYK, JAK1 and SOCS3) as effective candidates for drug development.
  10. Leong E, Ong SK, Madli F, Tan A, Lai D, Basir N, et al.
    Asian Pac J Cancer Prev, 2020 Jan 01;21(1):259-265.
    PMID: 31983194 DOI: 10.31557/APJCP.2020.21.1.259
    BACKGROUND: Colorectal cancer (CRC) is the third most common cancer in both men and women. In most Asian countries, both the incidence and mortality rates of CRC are gradually increasing. In Brunei Darussalam, CRC ranks first and second in lifetime risk among men and women respectively. This study aims to report the overall survival rates and associated factors of CRC in Brunei Darussalam.

    METHODS: This is a retrospective study examining CRC data for the period 2007 to 2017 retrieved from a population based cancer registry in Brunei Darussalam. A total of 728 patients were included in the analysis. Kaplan Meier method was used to estimate survival rates. Univariate analysis using log-rank test was used to examine the differences in survival between groups. Multivariate analysis using Cox PH regression was used to estimate hazard of death and obtain significant predictors that influence CRC patients' survival.

    RESULTS: The median survival time for colorectal, colon and rectal cancer patients were 57.0, 85.8 and 40.0 months respectively. The overall 1-, 3- and 5- year survival rates for CRC patients were 78.0%, 57.7% and 49.6% respectively. In univariate analysis, age at diagnosis, ethnicity, cancer stage, tumour location and histology were found to have significant difference in CRC patients' survival. In the Cox PH analysis, older age (≥70 years), cancer stage, ethnicity and other histological type were determined as associated factors of CRC patients' survival.

    CONCLUSION: This study found the overall 5-year survival rate of CRC in Brunei Darussalam is similar to that in some Asian countries such as Singapore and Malaysia. However, more efforts need to be carried out in order to raise awareness of CRC and improve the survival of CRC patients.

  11. Koh JX, Masomian M, Anasir MI, Ong SK, Poh CL
    Vaccines (Basel), 2023 Mar 11;11(3).
    PMID: 36992213 DOI: 10.3390/vaccines11030629
    EV-A71 is a common viral pathogen that causes hand, foot and mouth disease. It is a single-stranded RNA virus that has a low fidelity RNA polymerase and, as a result, spontaneous mutations frequently occur in the EV-A71 genome. The mutations within the genome give rise to quasispecies within the viral population that could be further defined by haplotypes. In vitro virulence of EV-A71 was shown by plaque size in Rhabdomyosarcoma (RD) cells, which was substantiated by in vitro characterizations of growth, RNA replication, binding, attachment and host cell internalization. Viruses could exhibit different host cell adaptations in different cell lines during viral passaging. The EV-A71/WT (derived from EV-A71 subgenotype B4) was shown to comprise six haplotypes through next-generation sequencing, where only EV-A71/Hap2 was found to be cultivable in RD cells, while EV-A71/Hap4 was the only cultivable haplotype in Vero cells. The EV-A71/WT produced plaques of four different sizes (small, medium, big, huge) in RD cells, while only two plaque variants (small, medium) were present in Vero cells. The small plaque variant isolated from RD cells displayed lower RNA replication rates, slower in vitro growth kinetics, higher TCID50 and lower attachment, binding and entry ability when compared against EV-A71/WT due to the mutation at 3D-S228P that disrupted the active site of the RNA polymerase, resulting in low replication and growth of the variant.
  12. Khalid K, Lim HX, Anwar A, Tan SH, Hwang JS, Ong SK, et al.
    AAPS PharmSciTech, 2024 Mar 12;25(3):60.
    PMID: 38472523 DOI: 10.1208/s12249-024-02778-x
    The protective efficacies of current licensed vaccines against COVID-19 have significantly reduced as a result of SARS-CoV-2 variants of concern (VOCs) which carried multiple mutations in the Spike (S) protein. Considering that these vaccines were developed based on the S protein of the original SARS-CoV-2 Wuhan strain, we designed a recombinant plasmid DNA vaccine based on highly conserved and immunogenic B and T cell epitopes against SARS-CoV-2 Wuhan strain and the Omicron VOC. Literature mining and bioinformatics were used to identify 6 immunogenic peptides from conserved regions of the SARS-CoV-2 S and membrane (M) proteins. Nucleotide sequences encoding these peptides representing highly conserved B and T cell epitopes were cloned into a pVAX1 vector to form the pVAX1/S2-6EHGFP recombinant DNA plasmid vaccine. The DNA vaccine was intranasally or intramuscularly administered to BALB/c mice and evaluations of humoral and cellular immune responses were performed. The intramuscular administration of pVAX1/S2-6EHGFP was associated with a significantly higher percentage of CD8+ T cells expressing IFN-γ when compared with the empty vector and PBS controls. Intramuscular or intranasal administrations of pVAX1/S2-6EHGFP resulted in robust IgG antibody responses. Sera from mice intramuscularly immunized with pVAX1/S2-6EHGFP were found to elicit neutralizing antibodies capable of SARS-CoV-2 Omicron variant with the ACE2 cell surface receptor. This study demonstrated that the DNA vaccine construct encoding highly conserved immunogenic B and T cell epitopes was capable of eliciting potent humoral and cellular immune responses in mice.
  13. Yew GY, Tham TC, Show PL, Ho YC, Ong SK, Law CL, et al.
    Appl Biochem Biotechnol, 2020 May;191(1):1-28.
    PMID: 32006247 DOI: 10.1007/s12010-019-03207-7
    The sustainability of nitrile glove production process is essential both in the financial and energy perspective. Nitrile glove has the lowest material cost with positive mechanical and chemical performance quality for the disposable glove market. Nitrile glove also holds a major market in disposable gloves sector, and nitrile rubber compounds may contribute to the huge reduction of the capital cost for a pair of surgical gloves due to the inexpensive raw material compares with other synthetic polyisoprene or neoprene. Hence, blending of bio-additive into the nitrile latex might support the 3 pillars of sustainability for environmental, societal, and financial sector. Bio-additives helps increase the degradation rate of gloves under natural conditions. Bio-based substances could be derived from food waste, natural plants, and aquatic plants like micro- and macro algae. Furthermore, antimicrobial agent (e.g. brilliant green and cyclohexadiene) is the trend in surgical glove for coated as protecting layer, due to the capability to remove pathogens or bacterial on the surgeon hands during operation period. Besides, the section in energy recovery is a proposing gateway for reducing the financial cost and makes the process sustainable.
  14. Ong SK, Husain SF, Wee HN, Ching J, Kovalik JP, Cheng MS, et al.
    Diagnostics (Basel), 2021 Oct 25;11(11).
    PMID: 34829325 DOI: 10.3390/diagnostics11111978
    BACKGROUND: Major depressive disorder (MDD) is a debilitating condition with a high disease burden and medical comorbidities. There are currently few to no validated biomarkers to guide the diagnosis and treatment of MDD. In the present study, we evaluated the differences between MDD patients and healthy controls (HCs) in terms of cortical haemodynamic responses during a verbal fluency test (VFT) using functional near-infrared spectroscopy (fNIRS) and serum amino acid profiles, and ascertained if these parameters were correlated with clinical characteristics.

    METHODS: Twenty-five (25) patients with MDD and 25 age-, gender-, and ethnicity-matched HCs were recruited for the study. Real-time monitoring of the haemodynamic response during completion of a VFT was quantified using a 52-channel NIRS system. Serum samples were analysed and quantified by liquid chromatography-mass spectrometry for amino acid profiling. Receiver-operating characteristic (ROC) curves were used to classify potential candidate biomarkers.

    RESULTS: The MDD patients had lower prefrontal and temporal activation during completion of the VFT than HCs. The MDD patients had lower mean concentrations of oxy-Hb in the left orbitofrontal cortex (OFC), and lower serum histidine levels. When the oxy-haemoglobin response was combined with the histidine concentration, the sensitivity and specificity of results improved significantly from 66.7% to 73.3% and from 65.0% to 90.0% respectively, as compared to results based only on the NIRS response.

    CONCLUSIONS: These findings demonstrate the use of combination biomarkers to aid in the diagnosis of MDD. This technique could be a useful approach to detect MDD with greater precision, but additional studies are required to validate the methodology.

  15. Low WF, Ngeow YF, Chook JB, Tee KK, Ong SK, Peh SC, et al.
    Expert Rev Mol Med, 2022 Nov 16;25:e11.
    PMID: 36380484 DOI: 10.1017/erm.2022.38
    Hepatitis B virus (HBV) infection led to 66% liver deaths world-wide in year 2015. Thirty-seven per cent of these deaths were the result of chronic hepatitis B (CHB)-associated hepatocellular carcinoma (HCC). Although early diagnosis of HCC improves survival, early detection is rare. Methylation of HBV DNA including covalently closed circular DNA (cccDNA) is more often encountered in HCC cases than those in CHB and cirrhosis. Three typical CpG islands within the HBV genome are the common sites for methylation. The HBV cccDNA methylation affects the viral replication and protein expression in the course of infection and may associate with the disease pathogenesis and HCC development. We review the current findings in HBV DNA methylation that provide insights into its role in HCC diagnosis.
  16. Ahmed U, Ong SK, Tan KO, Khan KM, Khan NA, Siddiqui R, et al.
    Int Microbiol, 2023 Nov 28.
    PMID: 38015290 DOI: 10.1007/s10123-023-00450-1
    Acanthamoeba are free living amoebae that are the causative agent of keratitis and granulomatous amoebic encephalitis. Alpha-Mangostin (AMS) is a significant xanthone; that demonstrates a wide range of biological activities. Here, the anti-amoebic activity of α-Mangostin and its silver nano conjugates (AMS-AgNPs) were evaluated against pathogenic A. castellanii trophozoites and cysts in vitro. Amoebicidal assays showed that both AMS and AMS-AgNPs inhibited the viability of A. castellanii dose-dependently, with an IC50 of 88.5 ± 2.04 and 20.2 ± 2.17 μM, respectively. Both formulations inhibited A. castellanii-mediated human keratinocyte cell cytopathogenicity. Functional assays showed that both samples caused apoptosis through the mitochondrial pathway and reduced mitochondrial membrane potential and ATP production, while increasing reactive oxygen species (ROS) and nicotinamide adenine dinucleotide phosphate (NADPH) cytochrome-c reductase in the cytosol. Whole transcriptome sequencing of A. castellanii showed the expression of 826 genes, with 447 genes being up-regulated and 379 genes being down-regulated post treatment. The Kyoto Encyclopedia of Genes and Genomes analysis showed that the majority of genes were linked to apoptosis, autophagy, RAP1, AGE-RAGE and oxytocin signalling pathways. Seven genes (PTEN, H3, ARIH1, SDR16C5, PFN, glnA GLUL, and SRX1) were identified as the most significant (Log2 (FC) value 4) for molecular mode of action in vitro. Future in vivo studies with AMS and nanoconjugates are needed to realize the clinical potential of this work.
  17. El Omari N, Balahbib A, Bakrim S, Benali T, Ullah R, Alotaibi A, et al.
    Heliyon, 2023 Nov;9(11):e21222.
    PMID: 38053906 DOI: 10.1016/j.heliyon.2023.e21222
    Lavandula stoechas, a Mediterranean plant, renowned in traditional medicine for its health benefits, is also arousing strong interest associated with its essential oils (EOs) with promising therapeutic properties. The aim of this study was to analyze the chemical composition of the plant, as well as to study its major activities, including antioxidant, anti-diabetic, dermatoprotective, anti-inflammatory, and antibacterial effects, focusing on its major molecules. Using the GC-MS method, the main compounds identified in L. stoechas EO (LSEO) were fenchone (31.81 %) and camphor (29.60 %), followed by terpineol (13.14 %) and menthone (8.96 %). To assess their antioxidant activity, three in vitro methods were used (DPPH, FRAP, and ABTS). The results revealed that LSEO exhibited the best antiradical property (54 ± 62 μg/mL) according to the DPPH test, while fenchone demonstrated the highest antioxidant capacity (87 ± 92 μg/mL) in the FRAP test, and camphor displayed the highest antioxidant capacity (96 ± 32 μg/mL) in the ABTS test. However, these results were lower than those obtained by Trolox used as a reference. In addition, study also explored the anti-diabetic potential of LSEO and its major compounds by evaluating their inhibitory activity towards two digestive enzymes, α-glucosidase and α-amylase. Camphor (76.92 ± 2.43 μg/mL) and fenchone (69.03 ± 2.31 μg/mL) exhibited the best inhibitory activities for α-amylase and α-glucosidase assays, respectively. Interestingly, all elements of the study exerted activities superior to those of acarbose, regardless of the test performed. In contrast, the evaluation of the dermatoprotective potential was carried out in vitro by targeting two enzymes involved in cutaneous processes, tyrosinase and elastase. In this light, fenchone (53.14 ± 3.06 μg/mL) and camphor (48.39 ± 1.92 μg/mL) were the most active against tyrosinase and elastase, respectively. It should be noted that the effect of both molecules, as well as that of LSEO, ranged between 53.14 ± 3.06 and 97.45 ± 5.22 μg/mL, which was significantly lower than the standard, quercetin (IC50 of 246.90 ± 2 0.54 μg/mL) against tyrosinase. Furthermore, the anti-inflammatory potential of these elements has been studied by evaluating their ability to inhibit lipooxygenase (LOX), a class of enzymes involved in the inflammatory process in the human body. As a result, the LSEO demonstrated a remarkable effect with an IC50 of 6.34 ± 1.29 μg/mL, which was almost comparable to the standard, quercetin (IC50 = 3.93 ± 0.45 μg/mL). Concerning the antibacterial potential, we carried out a quantitative analysis of the various products tested, revealing a bactericidal activity of the LSEO against the strain L. monocytogenes ATCC 13932 at a minimum effective concentration (MIC = CMB = 0.25). Overall, LSEOs offer significant potential as a source of natural antioxidants, and antidiabetic and anti-inflammatory agents, as well as dermatoprotective and antibacterial compounds. Its major molecules, fenchone and camphor, showed promising activity in these areas of study, making it a valuable candidate for future research and development in the field of natural medicine.
  18. Rozman NAS, Tong WY, Leong CR, Anuar MR, Karim S, Ong SK, et al.
    Sci Rep, 2020 02 24;10(1):3307.
    PMID: 32094395 DOI: 10.1038/s41598-020-60364-0
    Essential oil of Homalomena pineodora inhibits diabetic pathogens; however, the activity was not sustainable when applied as wound dressing. This study aims to synthesise the essential oil nanoparticle using chitosan. The nanoparticles were synthesised with ion gelation method, confirmed by spectroscopic analysis. The spherical nanoparticles display a size of 70 nm, with strong surface charge of +24.10 mV. The nanoparticles showed an initial burst release followed by a slow release pattern for 72 h, following the first order of kinetic. The release behaviour was ideal for wound dressing. The antimicrobial activity was broad spectrum. The formation of nanoparticle enhanced the antimicrobial efficacy of the essential oil. The nanoparticle also showed a concentration-dependent killing behaviour on time-kill assay. In the 3D collagen wound models, the nanoparticles reduced the microbial growth by 60-80%. In conclusion, H. pineodora nanoparticles showed pharmaceutical potential in inhibiting microbial growth on diabetic ulcers.
  19. Gatellier L, Ong SK, Matsuda T, Ramlee N, Lau FN, Yusak S, et al.
    Asian Pac J Cancer Prev, 2021 Sep 01;22(9):2945-2950.
    PMID: 34582666 DOI: 10.31557/APJCP.2021.22.9.2945
    The COVID-pandemic has shown significant impact on cancer care from early detection, management plan to clinical outcomes of cancer patients. The Asian National Cancer Centres Alliance (ANCCA) has put together the 9 "Ps" as guidelines for cancer programs to better prepare for the next pandemic. The 9 "Ps" are Priority, Protocols and Processes, Patients, People, Personal Protective Equipments (PPEs), Pharmaceuticals, Places, Preparedness, and Politics. Priority: to maintain cancer care as a key priority in the health system response even during a global infectious disease pandemic. Protocol and processes: to develop a set of Standard Operating Procedures (SOPs) and have relevant expertise to man the Disease Outbreak Response (DORS) Taskforce before an outbreak. Patients: to prioritize patient safety in the event of an outbreak and the need to reschedule cancer management plan, supported by tele-consultation and use of artificial intelligence technology. People: to have business continuity planning to support surge capacity. PPEs and Pharmaceuticals: to develop plan for stockpiles management, build local manufacturing capacity and disseminate information on proper use and reduce wastage. Places: to design and build cancer care facilities to cater for the need of triaging, infection control, isolation and segregation. Preparedness: to invest early on manpower building and technology innovations through multisectoral and international collaborations. Politics: to ensure leadership which bring trust, cohesion and solidarity for successful response to pandemic and mitigate negative impact on the healthcare system.
  20. El Hachlafi N, Fikri-Benbrahim K, Al-Mijalli SH, Elbouzidi A, Jeddi M, Abdallah EM, et al.
    Heliyon, 2024 Jan 15;10(1):e23084.
    PMID: 38169772 DOI: 10.1016/j.heliyon.2023.e23084
    Tetraclinis articulata is a known traditional medicinal plant used to manage various ailments, such as diabetes, rheumatism and infectious diseases. This study aims to determine the chemical constituents of T. articulata essential oil (EO) and to evaluate its in vitro antibacterial, anti-candidal, antioxidant, anti-inflammatory and dermatoprotective properties. In addition, a computational docking approach was used to predict the potential antioxidant, antibacterial, antifungal, anti-inflammatory, and cytotoxic properties of the identified compounds. The volatile oil obtained by hydrodistillation was characterized using gas chromatography-mass spectrometry (GC-MS). The antioxidant activity of T. articulata EO was investigated using three complementary assays: DPPH, ABTS and FRAP. Lipoxygenase (5-LOX) and tyrosinase enzymes were used to assess the anti-inflammatory and dermatoprotective effects of this oil. Moreover, disc-diffusion technique, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays were employed for the antimicrobial screening. The GC-MS analysis revealed that bornyl acetate (41.80 %), α-pinene (17.97 %) and camphor (15.97 %) are the major components of the studied EO. Moreover, T. articulata EO has exhibited promising antioxidant effect on FRAP, DPPH, and ABTS experiments. It also significantly inhibited 5-LOX (IC50 = 67.82 ± 0.03 μg/mL) and tyrosinase (IC50 = 211.93 ± 0.02 μg/mL). The results of MIC and MBC assays indicated that T. articulata EO is able to inhibit the growth of all tested bacteria (Gram + and Gram -) and Candida species. The ratio of tolerance level indicated that the tested oil was bactericidal against the Gram + bacteria and Candida species, whereas it has a bacteriostatic behavior against the Gram- bacteria. In light of these findings, T. articulata EO may be suggested as a potential pharmaceutical agent to prevent inflammation and skin problems and may serve as a natural antimicrobial and antioxidant alternative for sustainable application in food products.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links