Displaying all 5 publications

Abstract:
Sort:
  1. Tan SG, Omar MY, Mahani KW, Rahani M, Selvaraj OS
    Biochem Genet, 1994 Dec;32(11-12):415-22.
    PMID: 7748158
    Nine populations of three species of Nephotettix (Insecta: Hemiptera) from Peninsular Malaysia were analysed for nine enzymes comprising 11 loci. Nei's (Genetics 89, 583, 1978) genetic distance, D, between N. virescens and N. malayanus was 0.181, that between N. virescens and N. nigropictus was 0.283, and that between N. malayanus and N. nigropictus was 0.203. The genetic distance between N. nigropictus from rice plant and from the weed-grass L. hexandra at Universiti Pertanian Malaysia was 0.004 and their genetic identity was 0.996, thus indicating that this insect species fees on both host plants. The proportion of polymorphic loci and the observed heterozygosities were higher in N. nigropictus, with a wider range of host plants, than in N. virescens and N. malayanus, restricted to rice and L. hexandra, respectively.
  2. Latif MA, Omar MY, Rafii MY, Malek MA, Tan SG
    C. R. Biol., 2013 Jul;336(7):354-63.
    PMID: 23932255 DOI: 10.1016/j.crvi.2013.06.006
    Morphological and host-plant relationship studies were conducted to differentiate two sympatric populations of brown planthopper (BPH), Nilaparvata lugens, one from rice (Oryza sativa) and the other from Leersia hexandra, a weed grass. In morphometric studies based on esterase activities, an UPGMA dendrogram using 17 quantitative morphological characters, including stridulatory organs (courtship signal-producing organs) between two sympatric populations of N. lugens, one from rice and the other from L. hexandra, a weed grass revealed that both populations were separated from each other. An out-group, N. bakeri, was found to be completely different from the two sympatric populations of N. lugens. Rice plants were best suited for the establishment of the rice-infesting population, and L. hexandra was a favourable host for the Leersia-infesting population. The individuals derived from one host did not thrive on the other host, as shown by a significant reduction in survival and nymphal development, ovipositional preferences, ovipositional response, and egg hatchability. Therefore, morphological and host-plant relationship studies indicate that rice-associated population with high esterase activities and L. heaxandra-associated population with low esterase activities are two closely related sibling species.
  3. Latif MA, Rafii MY, Mazid MS, Ali ME, Ahmed F, Omar MY, et al.
    ScientificWorldJournal, 2012;2012:586831.
    PMID: 22593700 DOI: 10.1100/2012/586831
    Direct amplified length polymorphism (DALP) combines the advantages of a high-resolution fingerprint method and also characterizing the genetic polymorphisms. This molecular method was also found to be useful in brown planthopper, Nilaparvata lugens species complex for the analysis of genetic polymorphisms. A total of 11 populations of Nilaparvata spp. were collected from 6 locations from Malaysia. Two sympatric populations of brown planthopper, N. lugens, one from rice and the other from a weed grass (Leersia hexandra), were collected from each of five locations. N. bakeri was used as an out group. Three oligonucleotide primer pairs, DALP231/DALPR'5, DALP234/DALPR'5, and DALP235/DALPR'5 were applied in this study. The unweighted pair group method with arithmetic mean (UPGMA) dendrogram based on genetic distances for the 11 populations of Nilaparvata spp. revealed that populations belonging to the same species and the same host type clustered together irrespective of their geographical localities of capture. The populations of N. lugens formed into two distinct clusters, one was insects with high esterase activities usually captured from rice and the other was with low esterase activities usually captured from L. hexandra. N. bakeri, an out group, was the most isolated group. Analyses of principal components, molecular variance, and robustness also supported greatly to the findings of cluster analysis.
  4. Latif MA, Omar MY, Tan SG, Siraj SS, Ali ME, Rafii MY
    Genet. Mol. Res., 2012;11(1):30-41.
    PMID: 22290463 DOI: 10.4238/2012.January.9.4
    Contamination of insect DNA for RAPD-PCR analysis can be a problem because many primers are non-specific and DNA from parasites or gut contents may be simultaneously extracted along with that of the insect. We measured the quantity of food ingested and assimilated by two sympatric populations of brown planthopper (BPH), Nilaparvata lugens, one from rice and the other from Leersia hexandra (Poaceae), a wetland forage grass, and we also investigated whether host plant DNA contaminates that of herbivore insects in extractions of whole insects. Ingestion and assimilation of food were reduced significantly when individuals derived from one host plant were caged on the other species. The bands, OPA3 (1.25), OPD3 (1.10), OPD3 (0.80), OPD3 (0.60), pUC/M13F (0.35), pUC/M13F (0.20), BOXAIR (0.50), peh#3 (0.50), and peh#3 (0.17) were found in both rice-infesting populations of brown planthopper and its host plant (rice). Similarly, the bands, OPA4 (1.00), OPB10 (0.70), OPD3 (0.90), OPD3 (0.80), OPD3 (0.60), pUC/ M13F (0.35), pUC/M13F (0.20), and BOXAIR (0.50) were found in both Leersia-infesting populations of brown planthopper and the host plant. So, it is clear that the DNA bands amplified in the host plants were also found in the extracts from the insects feeding on them.
  5. Latif MA, Omar MY, Tan SG, Siraj SS, Ismail AR
    Biochem Genet, 2010 Apr;48(3-4):266-86.
    PMID: 19967400 DOI: 10.1007/s10528-009-9316-5
    Studies on hybridization, inheritance, and population genetics of brown planthoppers that infest rice and weeds were undertaken using starch gel electrophoresis to determine whether the weed-infesting population represents a biological race or a species. F(1) and F(2) generations were produced by crosses between parental insects from the two populations with little indication of hybrid sterility. Gpi, Mdh, and Idh loci were inherited in a simple Mendelian fashion in families of two sympatric populations. Sixteen populations of Nilaparvata spp. from eight locations were collected. The Mdh, Idh, Pgm, Gpi, 6Pgd, and Acp loci were polymorphic. The N. lugens of rice with high esterase activity were clustered into a group and characterized by the presence of alleles Gpi (110) and Gpi (120), whereas N. lugens from weeds with low esterase activity were clustered into another group and characterized by Gpi (100) and Gpi (90) . There was a lack of heterozygotes between the common alleles of the two populations. This means that the two groups of individuals belong to different gene pools.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links