Displaying all 3 publications

Abstract:
Sort:
  1. Lin CN, Okabayashi T, Tummaruk P, Ooi PT
    Front Vet Sci, 2022;9:1122679.
    PMID: 36686156 DOI: 10.3389/fvets.2022.1122679
  2. Suwanprinya L, Morales NP, Sanvarinda P, Dieng H, Okabayashi T, Morales Vargas RE
    Jpn J Infect Dis, 2017 07 24;70(4):383-387.
    PMID: 28003593 DOI: 10.7883/yoken.JJID.2016.236
    Encephalitis has been described worldwide as a severe complication in patients infected by dengue virus. Reactive oxygen species (ROS) production is a key mechanism involved in the neuronal damage caused by viral encephalitis. In the present study, the capability of dengue virus serotypes 2 (DENV2) and DENV4 to induce ROS production was investigated in a rat microglial cell line, HAPI cells. The cells were infected with DENV2 and DENV4 at a multiplicity of infection of 0.1 for a 2-h adsorption period. Japanese encephalitis virus (JEV) was used as the reference. DENV2- and DENV4-induced microglial activation and significantly increased ROS production corresponded to decreased cell viability. The activity of DENV4 was significantly higher than the activities of DENV2 and JEV at 48 and 72 h post infection. DENV4 partly induced ROS production via an iron-induced Fenton reaction, as demonstrated by the treatment with an iron chelator, deferiprone. Despite the induction of increased inducible nitric oxide synthase expression and nitric oxide (NO) production by JEV, DENV2, and DENV4 did not induce NO production, suggesting the activation of different pathways in response to infections by different viruses. In conclusion, DENV2 and DENV4 have the capability to induce ROS production and activate microglia, which have been reported as the key components of neuronal damage.
  3. Kosoltanapiwat N, Reamtong O, Okabayashi T, Ampawong S, Rungruengkitkun A, Thiangtrongjit T, et al.
    BMC Microbiol, 2018 10 17;18(1):135.
    PMID: 30332986 DOI: 10.1186/s12866-018-1302-9
    BACKGROUND: The pteropine orthoreovirus (PRV) was isolated from monkey (Macaca fascicularis) faecal samples collected from human-inhabited areas in Lopburi Province, Thailand. These samples were initially obtained to survey for the presence of hepatitis E virus (HEV).

    RESULTS: Two virus isolates were retrieved by virus culture of 55 monkey faecal samples. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was successfully used to identify the viruses as the segmented dsRNA orthoreovirus. Phylogenetic analysis of the Lopburi orthoreovirus whole-genomes revealed relationships with the well-characterised PRVs Pulau (segment L1), Cangyuan (segments L2, M3 and S3), Melaka (segments L3 and M2), Kampar (segments M1 and S2) and Sikamat (segments S1 and S4) of Southeast Asia and China with nucleotide sequence identities of 93.5-98.9%. RT-PCR showed that PRV was detected in 10.9% (6/55) and HEV was detected in 25.5% (14/55) of the monkey faecal samples.

    CONCLUSIONS: PRV was isolated from monkey faeces for the first time in Thailand via viral culture and LC-MS/MS. The genetic diversity of the virus genome segments suggested a re-assortment within the PRV species group. The overall findings emphasise that monkey faeces can be sources of zoonotic viruses, including PRV and HEV, and suggest the need for active virus surveillance in areas of human and monkey co-habitation to prevent and control emerging zoonotic diseases in the future.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links