Displaying all 2 publications

Abstract:
Sort:
  1. Wang Y, See J, Phan RC, Oh YH
    PLoS One, 2015;10(5):e0124674.
    PMID: 25993498 DOI: 10.1371/journal.pone.0124674
    Micro-expression recognition is still in the preliminary stage, owing much to the numerous difficulties faced in the development of datasets. Since micro-expression is an important affective clue for clinical diagnosis and deceit analysis, much effort has gone into the creation of these datasets for research purposes. There are currently two publicly available spontaneous micro-expression datasets--SMIC and CASME II, both with baseline results released using the widely used dynamic texture descriptor LBP-TOP for feature extraction. Although LBP-TOP is popular and widely used, it is still not compact enough. In this paper, we draw further inspiration from the concept of LBP-TOP that considers three orthogonal planes by proposing two efficient approaches for feature extraction. The compact robust form described by the proposed LBP-Six Intersection Points (SIP) and a super-compact LBP-Three Mean Orthogonal Planes (MOP) not only preserves the essential patterns, but also reduces the redundancy that affects the discriminality of the encoded features. Through a comprehensive set of experiments, we demonstrate the strengths of our approaches in terms of recognition accuracy and efficiency.
  2. Oh YH, See J, Le Ngo AC, Phan RC, Baskaran VM
    Front Psychol, 2018;9:1128.
    PMID: 30042706 DOI: 10.3389/fpsyg.2018.01128
    Over the last few years, automatic facial micro-expression analysis has garnered increasing attention from experts across different disciplines because of its potential applications in various fields such as clinical diagnosis, forensic investigation and security systems. Advances in computer algorithms and video acquisition technology have rendered machine analysis of facial micro-expressions possible today, in contrast to decades ago when it was primarily the domain of psychiatrists where analysis was largely manual. Indeed, although the study of facial micro-expressions is a well-established field in psychology, it is still relatively new from the computational perspective with many interesting problems. In this survey, we present a comprehensive review of state-of-the-art databases and methods for micro-expressions spotting and recognition. Individual stages involved in the automation of these tasks are also described and reviewed at length. In addition, we also deliberate on the challenges and future directions in this growing field of automatic facial micro-expression analysis.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links