Displaying all 3 publications

Abstract:
Sort:
  1. Coldren CD, Hashim P, Ali JM, Oh SK, Sinskey AJ, Rha C
    Planta Med, 2003 Aug;69(8):725-32.
    PMID: 14531023
    The molecular pathways underlying the diverse biological activity of the triterpeniod compounds isolated from the tropical medicinal plant Centella asiatica were studied with gene microarrays and real-time reverse transcription polymerase chain reaction (real-time RT-PCR) to quantify the expression of 1053 human genes in human fibroblasts. Fibroblast cells grown in culture were used as a model system to evaluate the stimulation of wound healing by titrated extract from Centella asiatica (TECA) as well as by the four principal triterpenoid components of Centella. TECA treatment effects the expression of genes involved in angiogenesis and the remodeling of extracellular matrix, as well as diverse growth factor genes. The extent of expression change of TNFAIP6, an extracellular hyaluronan binding protein, was found to be largely dose-dependent, to respond most strongly to the free acids asiatic acid and madecassic acid, and to increase in expression over 48 hours of treatment. These results show that Centella triterpenes evoke a gene-expression response consistent with their prevailing medical uses in the treatment of connective tissue disorders such as wound healing and microangiopathy. The identification of genes modulated by these compounds provides the basis for a molecular understanding of Centella's bioactivity, and opportunities for the quantitative correlation of this activity with clinical effectiveness at a molecular level.
  2. Yaqoob AA, Al-Zaqri N, Alamzeb M, Hussain F, Oh SE, Umar K
    Molecules, 2023 May 25;28(11).
    PMID: 37298824 DOI: 10.3390/molecules28114349
    Microbial fuel cells (MFCs) seem to have emerged in recent years to degrade the organic pollutants from wastewater. The current research also focused on phenol biodegradation using MFCs. According to the US Environmental Protection Agency (EPA), phenol is a priority pollutant to remediate due to its potential adverse effects on human health. At the same time, the present study focused on the weakness of MFCs, which is the low generation of electrons due to the organic substrate. The present study used rotten rice as an organic substrate to empower the MFC's functional capacity to degrade the phenol while simultaneously generating bioenergy. In 19 days of operation, the phenol degradation efficiency was 70% at a current density of 17.10 mA/m2 and a voltage of 199 mV. The electrochemical analysis showed that the internal resistance was 312.58 Ω and the maximum specific capacitance value was 0.00020 F/g on day 30, which demonstrated mature biofilm production and its stability throughout the operation. The biofilm study and bacterial identification process revealed that the presence of conductive pili species (Bacillus genus) are the most dominant on the anode electrode. However, the present study also explained well the oxidation mechanism of rotten rice with phenol degradation. The most critical challenges for future recommendations are also enclosed in a separate section for the research community with concluding remarks.
  3. Cui Y, Hada K, Kawashima T, Kino M, Lin W, Mizuno Y, et al.
    Nature, 2023 Sep;621(7980):711-715.
    PMID: 37758892 DOI: 10.1038/s41586-023-06479-6
    The nearby radio galaxy M87 offers a unique opportunity to explore the connections between the central supermassive black hole and relativistic jets. Previous studies of the inner region of M87 revealed a wide opening angle for the jet originating near the black hole1-4. The Event Horizon Telescope resolved the central radio source and found an asymmetric ring structure consistent with expectations from general relativity5. With a baseline of 17 years of observations, there was a shift in the jet's transverse position, possibly arising from an 8- to 10-year quasi-periodicity3. However, the origin of this sideways shift remains unclear. Here we report an analysis of radio observations over 22 years that suggests a period of about 11 years for the variation in the position angle of the jet. We infer that we are seeing a spinning black hole that induces the Lense-Thirring precession of a misaligned accretion disk. Similar jet precession may commonly occur in other active galactic nuclei but has been challenging to detect owing to the small magnitude and long period of the variation.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links