Displaying all 5 publications

Abstract:
Sort:
  1. Shiek Ahmad B, Petty SJ, Gorelik A, O'Brien TJ, Hill KD, Christie JJ, et al.
    Osteoporos Int, 2017 Sep;28(9):2591-2600.
    PMID: 28589417 DOI: 10.1007/s00198-017-4098-9
    Changes in areal bone mineral density (aBMD) and other predictors of bone loss were evaluated in 48 same-sex twin/age-matched sibling pairs discordant for antiepileptic drug (AED) use. AED users had reduced BMD at the hip regions. Prolonged AED users had greater aBMD loss, predicting a higher risk of bone fragility.

    INTRODUCTION: To investigate the longitudinal associations of bone mineral measures with antiepileptic drug (AED) use, including enzyme-inducing (EIAED) and non-enzyme-inducing (NEIAED) types, and other predictors of bone loss in a study of 48 same-sex twin/age-matched sibling pairs (40 female, 8 male) discordant for AED use.

    METHODS: Using dual-energy X-ray absorptiometry (DXA), areal bone mineral density (aBMD) and content (BMC) at the hip regions, forearm, lumbar spine, and whole body were measured twice, at least 2 years apart. The mean within-pair difference (MWPD), MWPD%, and mean annual rate of aBMD change were adjusted for age, weight, and height. Predictors of bone loss were evaluated.

    RESULTS: AED users, compared to non-users, at baseline and follow-up, respectively, had reduced aBMD at the total hip (MWPD% 3.8, 4.4%), femoral neck (4.7, 4.5%), and trochanter regions (4.1, 4.6%) (p  0.05) regions did not differ within pairs. Nevertheless, EIAED users had greater aBMD loss than non-users (n = 20 pairs) at the total hip (1.7 vs. 0.3%, p = 0.013) and whole body regions (0.7% loss vs. 0.1% BMD gain, p = 0.019), which was not found in NEIAED-discordant pairs (n = 16). AED use >20 years predicted higher aBMD loss at the forearm (p = 0.028), whole body (p = 0.010), and whole body BMC (p = 0.031).

    CONCLUSIONS: AED users had reduced aBMD at the hip regions. Prolonged users and EIAED users had greater aBMD loss, predicting a higher risk of bone fragility. Further prospective studies of AED effects on bone microarchitecture are needed.

  2. O'Brien T, Ahn JS, Chye R, Le B, Lu H, Olarte G, et al.
    J Opioid Manag, 2019 7 26;15(2):147-158.
    PMID: 31343716 DOI: 10.5055/jom.2019.0496
    Transdermal buprenorphine (TDB) has demonstrated effectiveness in treating a range of chronic pain conditions, including cancer pain, nociceptive pain, and neuropathic pain and has a favorable safety profile. Worldwide, clinical experience of its use is relatively limited. There is considerable misunderstanding about the pharmacology, mechanism of action, and safety of buprenorphine. There is also limited guidance on the appropriate use of TDB for chronic pain management. This article presents an overview of TDB and also provides practical recommendations for its use as part of a multifaceted strategy in chronic cancer and non-cancer pain.
  3. Beaudrot L, Ahumada JA, O'Brien T, Alvarez-Loayza P, Boekee K, Campos-Arceiz A, et al.
    PLoS Biol, 2016 Jan;14(1):e1002357.
    PMID: 26785119 DOI: 10.1371/journal.pbio.1002357
    Extinction rates in the Anthropocene are three orders of magnitude higher than background and disproportionately occur in the tropics, home of half the world's species. Despite global efforts to combat tropical species extinctions, lack of high-quality, objective information on tropical biodiversity has hampered quantitative evaluation of conservation strategies. In particular, the scarcity of population-level monitoring in tropical forests has stymied assessment of biodiversity outcomes, such as the status and trends of animal populations in protected areas. Here, we evaluate occupancy trends for 511 populations of terrestrial mammals and birds, representing 244 species from 15 tropical forest protected areas on three continents. For the first time to our knowledge, we use annual surveys from tropical forests worldwide that employ a standardized camera trapping protocol, and we compute data analytics that correct for imperfect detection. We found that occupancy declined in 22%, increased in 17%, and exhibited no change in 22% of populations during the last 3-8 years, while 39% of populations were detected too infrequently to assess occupancy changes. Despite extensive variability in occupancy trends, these 15 tropical protected areas have not exhibited systematic declines in biodiversity (i.e., occupancy, richness, or evenness) at the community level. Our results differ from reports of widespread biodiversity declines based on aggregated secondary data and expert opinion and suggest less extreme deterioration in tropical forest protected areas. We simultaneously fill an important conservation data gap and demonstrate the value of large-scale monitoring infrastructure and powerful analytics, which can be scaled to incorporate additional sites, ecosystems, and monitoring methods. In an era of catastrophic biodiversity loss, robust indicators produced from standardized monitoring infrastructure are critical to accurately assess population outcomes and identify conservation strategies that can avert biodiversity collapse.
  4. Beaudrot L, Kroetz K, Alvarez-Loayza P, Amaral I, Breuer T, Fletcher C, et al.
    Ecol Appl, 2016 Jun;26(4):1098-1111.
    PMID: 28581662 DOI: 10.1890/15-0935
    The conservation of tropical forest carbon stocks offers the opportunity to curb climate change by reducing greenhouse gas emissions from deforestation and simultaneously conserve biodiversity. However, there has been considerable debate about the extent to which carbon stock conservation will provide benefits to biodiversity in part because whether forests that contain high carbon density in their aboveground biomass also contain high animal diversity is unknown. Here, we empirically examined medium to large bodied ground-dwelling mammal and bird (hereafter "wildlife") diversity and carbon stock levels within the tropics using camera trap and vegetation data from a pantropical network of sites. Specifically, we tested whether tropical forests that stored more carbon contained higher wildlife species richness, taxonomic diversity, and trait diversity. We found that carbon stocks were not a significant predictor for any of these three measures of diversity, which suggests that benefits for wildlife diversity will not be maximized unless wildlife diversity is explicitly taken into account; prioritizing carbon stocks alone will not necessarily meet biodiversity conservation goals. We recommend conservation planning that considers both objectives because there is the potential for more wildlife diversity and carbon stock conservation to be achieved for the same total budget if both objectives are pursued in tandem rather than independently. Tropical forests with low elevation variability and low tree density supported significantly higher wildlife diversity. These tropical forest characteristics may provide more affordable proxies of wildlife diversity for future multi-objective conservation planning when fine scale data on wildlife are lacking.
  5. Mendes CP, Albert WR, Amir Z, Ancrenaz M, Ash E, Azhar B, et al.
    Ecology, 2024 Apr 22.
    PMID: 38650359 DOI: 10.1002/ecy.4299
    Information on tropical Asian vertebrates has traditionally been sparse, particularly when it comes to cryptic species inhabiting the dense forests of the region. Vertebrate populations are declining globally due to land-use change and hunting, the latter frequently referred as "defaunation." This is especially true in tropical Asia where there is extensive land-use change and high human densities. Robust monitoring requires that large volumes of vertebrate population data be made available for use by the scientific and applied communities. Camera traps have emerged as an effective, non-invasive, widespread, and common approach to surveying vertebrates in their natural habitats. However, camera-derived datasets remain scattered across a wide array of sources, including published scientific literature, gray literature, and unpublished works, making it challenging for researchers to harness the full potential of cameras for ecology, conservation, and management. In response, we collated and standardized observations from 239 camera trap studies conducted in tropical Asia. There were 278,260 independent records of 371 distinct species, comprising 232 mammals, 132 birds, and seven reptiles. The total trapping effort accumulated in this data paper consisted of 876,606 trap nights, distributed among Indonesia, Singapore, Malaysia, Bhutan, Thailand, Myanmar, Cambodia, Laos, Vietnam, Nepal, and far eastern India. The relatively standardized deployment methods in the region provide a consistent, reliable, and rich count data set relative to other large-scale pressence-only data sets, such as the Global Biodiversity Information Facility (GBIF) or citizen science repositories (e.g., iNaturalist), and is thus most similar to eBird. To facilitate the use of these data, we also provide mammalian species trait information and 13 environmental covariates calculated at three spatial scales around the camera survey centroids (within 10-, 20-, and 30-km buffers). We will update the dataset to include broader coverage of temperate Asia and add newer surveys and covariates as they become available. This dataset unlocks immense opportunities for single-species ecological or conservation studies as well as applied ecology, community ecology, and macroecology investigations. The data are fully available to the public for utilization and research. Please cite this data paper when utilizing the data.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links