Capsaicin (N-vanillyl-8-methyl-6-(E)-none amide) is a unique and significant compound from group component of capsaicinoids. This component can only be found in the plants from the Capsicum genus. It is the primary source of pungency or spiciness of chilli pepper. Traditionally, capsaicin has been used to alleviate pain. Recently, some studies showed significant therapeutic effects of capsaicin in many diseases such as diabetes, hypertension, cancer and obesity. Determination of the most effective dosage used and underlying working mechanism of capsaicin are still in progress. Currently, capsaicin research, especially in drug interaction and encapsulation technologies, has not been reviewed. We aim to report current experimental evidence of capsaicin research focusing on its pharmacolog- ical properties, interaction with drugs and ways to improve the bioavailability of capsaicin. It is essential to provide a general orientation for further investigation that can discover more potency of capsaicin usage as a medicinal supplement to treat various diseases.
Introduction: Manilkara zapota (L.) P. Royen or sapodilla is a fruit-bearing tree that has been cultivated mainly in tropical areas including Mexico and South East Asia. The fruits and the other parts of M. zapota plant have been used since ages ago for various medicinal purposes. However, the data on the antioxidant properties of various parts of M. zapota is limited. Therefore, we aimed to measure the content and capacity of antioxidants in various M. zapota plant parts and also to screen the phytoconstituents present in the part with the highest antioxidant content and capacity. Methods: The in vitro antioxidant evaluation including the content of total phenolic (TPC) and total flavonoids (TFC) as well as β-carotene bleaching and 1-diphenyl-2-picrylhydrazyl (DPPH) scavenging ability of the leaves, seeds, flesh, and peels of M. zapota extracted by aqueous and ethanol were determined. The plant part that exhibited the highest TPC, TFC, and antioxidant capacity was selected for phytoconstituents identification using liq- uid chromatography mass spectrometry. Results: M. zapota leaves aqueous extract exhibited the highest TPC, TFC, and antioxidant capacities and therefore selected for phytoconstituents identification. Our study provide additional data in which a total of 39 phytoconstituents have been identified in the M. zapota leaves including m-coumaric acid, quinic acid, robinetinidol-4alpha-ol, isoorientin 6’’-O-caffeate, apocynin A, and C16 Sphinganine. Conclusion: Thus, our study revealed that M. zapota leaves aqueous extract has potential as a promising naturally-occurring an- tioxidant candidate which could be useful for medicinal and nutritional functions.
Mikania micrantha Kunth (Asteraceae) is a perennial creeping vine that can be found in South and North America, Africa, Pacific Islands and Southeast Asia, including Southern China and Malaysia. Previous studies have reported that this plant possesses several pharmacological properties which can be used to prevent and cure several diseases. Phytochemicals found from various parts of M. micrantha have been linked to beneficial medicinal properties such as antioxidant, antimicrobial, antitumour, anti-inflammatory, anti-stress, and also anti-diabetic activities. The primary aim of this paper is to review available scientific information on the nutritional, phytochemical and pharmacological properties of M. micrantha to provide baseline information for future studies.
Introduction: Morinda citrifolia or also known as noni is commonly consumed raw or blanched as side dishes or ‘ulam’. As cancer is one of the most leading causes of death in the world, we aimed to evaluate the anti-prolifera- tive potential of noni shoot against various types of cancer cell lines. Methods: The breast cancer (MDA-MB-231), liver cancer (HepG2), and colorectal cancer (HT-29) cell lines were treated with 70% ethanol extract of noni shoot for cytotoxicity testing using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis induction effects were examined using AO/PI dual fluorescent assay and cell cycle analysis using flow cytometry. Gas chromatography-mass spectrometry (GCMS) was also carried out to characterize the active compounds in noni shoot. Results: The cytotoxicity assay demonstrated noni shoot had IC50 of 49.72 µg/mL, 307.5 µg/mL and 65.43 µg/ mL against MDA-MB-231, HepG2, and HT-29 cell lines, respectively. The AO/PI staining showed apoptotic bodies such as cell blebbing, chromatin condensation, and nuclear fragmentation was markedly induced in the selected cancer cell lines-treated with noni shoot extract. Apoptosis induction by noni shoot was showed by a significant increase in sub G0/G1 phase in MDA-MB-231 and HT-29 cell lines of cell cycle analysis. It was found that noni shoot extract contained mostly acetic acid and ethriol that may contribute to its anti-cancer properties. Conclusion: These findings showed the potential anticancer properties of noni shoot extract thereby, further studies are needed to un- derstand the mechanism of noni as anti-cancer agent and possibility to be developed as a nutraceutical or functional food products.
Introduction: Archidendron bubalinum is an underutilised plant with numerous antioxidant properties and has a great potential to inhibit enzymes linked with diabetes and obesity. Food irradiation is an advanced technology to prolong the lifespan of plant, prevent physical spoilage and eradicate food borne disease. Present study was aimed to determine the total antioxidant activity, enzymatic inhibition against alpha-amylase, alpha-glucosidase and pancre- atic lipase and the toxicity levels of non-irradiated and irradiated (3, 6, 9 & 12 kGy) hot aqueous extract of A. bubal- inum. Methods: The antioxidant ability of the extract was determined by total phenolic content (TPC), total flavanoid content (TFC), Diphenyl-1-Picrylhydrazyl (DPPH), β-carotene assay and ferric reducing antioxidant potential (FRAP) assay. The inhibitory activities were evaluated using α-amylase, α-glucosidase, and pancreatic lipase inhibition as- say. The toxicity levels of A. bubalinum extract were determined using Brine shrimp and Zebra-fish assays. Results: Results showed that irradiated A. bubalinum at 12 kGy demonstrated the highest TFC (448.99 ± 5.02 mg GAE/g), FRAP (2.55 ± 0.40 mmol Fe2+/g) and β-carotene bleaching activity (79.49%). Whereas, non-irradiated A. bubalinum samples expressed the highest TPC (2517.07 ± 15.81 mg GAE/g) and exhibited the lowest IC50 values of α-amylase (31.99 ± 3.15 μg/ml), α-glucosidase (23.40 ± 0.69μg/ml) and pancreatic lipase (32.81 ± 7.96 μg/ml) activity. The toxicity assays also showed no significant different between irradiated and non-irradiated samples. Conclusion: The study suggests that gamma irradiation has the prospective future to increase antioxidant properties and maintaining the enzyme inhibitory activities to preserve the sample of A. bubalinum for commercial purposes.