Displaying all 2 publications

Abstract:
Sort:
  1. Ismail SI, Nunome H, Tamura Y
    Front Psychol, 2021;12:625079.
    PMID: 34149512 DOI: 10.3389/fpsyg.2021.625079
    A forefoot bending stiffness (FBS) property of footwear is known to benefit athletes in running performance. To date, the efficacy of bending stiffness on performance is rather unknown from the perspective of futsal shoes. This study investigates the influence of bending stiffness property of three commercial futsal shoes on change of direction run resultant performance. Nineteen university level athletes participated in the human performance test (multiple V-cut change of direction run) on a hardwood flooring facility using three pairs of futsal shoes (i.e., S1, S2, and S3) with different models but similar in outsole material (S1-mass: 311 g, heel-to-toe drop: 10 mm, friction coefficient, 1.25; S2-mass: 232 g, heel-to-toe drop: 8 mm, friction coefficient: 1.34; and S3-mass: 276 g, heel-to-toe drop: 7 mm, friction coefficient: 1.30). The FBS properties for each shoe were mechanically measured. Results from the analysis of variance indicated that there was a significant difference of FBS value among the three shoes (S1: 0.32 Nm/deg., S2: 0.26 Nm/deg., and S3: 0.36 Nm/deg.) [F(2,8) = 28.50 (p < 0.001)]. Shoes with relatively higher shoe-playing surface friction coefficient (S2 and S3) had significant impact on the V-cut performance (p < 0.05) when compared with the shoe with lower friction coefficient (S1). In contrast to the literature, the shoe with the lowest FBS (S2) did not suffer any detriments on the resultant performance in the test conducted. These findings suggested that there could be other performance limiting factors, such as the friction coefficient, rather than FBS that have greater influence on the test outcomes.
  2. Ismail SI, Nunome H, Lysdal FG, Kersting UG, Tamura Y
    Sports Biomech, 2022 Nov 07.
    PMID: 36342420 DOI: 10.1080/14763141.2022.2143415
    We aimed to clarify the effect of different futsal playing surface structural properties on the resultant change of direction (COD) performance, perceived traction and frictional properties. Twenty experienced male university soccer players performed a COD slalom-course test and perceived traction evaluation on three different types of playing surfaces (area-elastic: AE, point-elastic no.1: PE1 and point-elastic no.2: PE2). Frictional properties of these surfaces were mechanically evaluated against a futsal shoe, using a hydraulic moving force platform, and expressed as available friction coefficient (AFC). In the COD performance test, the participants performed significantly better on the point-elastic surfaces (PE1 and PE2) when compared to the area-elastic surface (AE) (p 
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links