Displaying all 5 publications

Abstract:
Sort:
  1. Mamat-Noorhidayah, Yazawa K, Numata K, Norma-Rashid Y
    PLoS One, 2018;13(3):e0193147.
    PMID: 29513694 DOI: 10.1371/journal.pone.0193147
    Resilin functions as an elastic spring that demonstrates extraordinary extensibility and elasticity. Here we use combined techniques, laser scanning confocal microscopy (LSCM) and scanning electron microscopy (SEM) to illuminate the structure and study the function of wing flexibility in damselflies, focusing on the genus Rhinocypha. Morphological studies using LSCM and SEM revealed that resilin patches and cuticular spikes were widespread along the longitudinal veins on both dorsal and ventral wing surfaces. Nanoindentation was performed by using atomic force microscopy (AFM), where the wing samples were divided into three sections (membrane of the wing, mobile and immobile joints). The resulting topographic images revealed the presence of various sizes of nanostructures for all sample sections. The elasticity range values were: membrane (0.04 to 0.16 GPa), mobile joint (1.1 to 2.0 GPa) and immobile joint (1.8 to 6.0 GPa). The elastomeric and glycine-rich biopolymer, resilin was shown to be an important protein responsible for the elasticity and wing flexibility.
  2. Wong YM, Masunaga H, Chuah JA, Sudesh K, Numata K
    Biomacromolecules, 2016 Oct 10;17(10):3375-3385.
    PMID: 27642764
    Amyloid fibers are classified as a new generation of tunable bionanomaterials that exhibit new functions related to their distinctive characteristics, such as their universality, tunability, and stiffness. Here, we introduce the catalytic residues of serine protease into a peptide catalyst (PC) via an enzyme-mimic approach. The rational design of a repeating pattern of polar and nonpolar amino acids favors the conversion of the peptides into amyloid-like fibrils via self-assembly. Distinct fibrous morphologies have been observed at different pH values and temperatures, which indicates that different fibril packing schemes can be designed; hence, fibrillar peptides can be used to generate efficient artificial catalysts for amidolytic activities at mild pH values. The results of atomic force microscopy, Raman spectroscopy, and wide-angle X-ray scattering analyses are used to discuss and compare the fibril structure of a fibrillar PC with its amidolytic activity. The pH of the fibrillation reaction crucially affects the pKa of the side chains of the catalytic triads and is important for stable fibril formation. Temperature is another important parameter that controls the self-assembly of peptides into highly stacked and laminated morphologies. The morphology and stability of fibrils are crucial and represent important factors for demonstrating the capability of the peptides to exert amidolytic activity. The observed amidolytic activity of PC4, one of the PCs, was validated using an inhibition assay, which revealed that PC4 can perform enzyme-like amidolytic catalysis. These results provide insights into the potential use of designed peptides in the generation of efficient artificial enzymes.
  3. Ng KK, Motoda Y, Watanabe S, Sofiman Othman A, Kigawa T, Kodama Y, et al.
    PLoS One, 2016;11(4):e0154081.
    PMID: 27100681 DOI: 10.1371/journal.pone.0154081
    In current plant biotechnology, the introduction of exogenous DNA encoding desired traits is the most common approach used to modify plants. However, general plant transformation methods can cause random integration of exogenous DNA into the plant genome. To avoid these events, alternative methods, such as a direct protein delivery system, are needed to modify the plant. Although there have been reports of the delivery of proteins into cultured plant cells, there are currently no methods for the direct delivery of proteins into intact plants, owing to their hierarchical structures. Here, we demonstrate the efficient fusion-peptide-based delivery of proteins into intact Arabidopsis thaliana. Bovine serum albumin (BSA, 66 kDa) was selected as a model protein to optimize conditions for delivery into the cytosol. The general applicability of our method to large protein cargo was also demonstrated by the delivery of alcohol dehydrogenase (ADH, 150 kDa) into the cytosol. The compatibility of the fusion peptide system with the delivery of proteins to specific cellular organelles was also demonstrated using the fluorescent protein Citrine (27 kDa) conjugated to either a nuclear localization signal (NLS) or a peroxisomal targeting signal (PTS). In conclusion, our designed fusion peptide system can deliver proteins with a wide range of molecular weights (27 to 150 kDa) into the cells of intact A. thaliana without interfering with the organelle-targeting peptide conjugated to the protein. We expect that this efficient protein delivery system will be a powerful tool in plant biotechnology.
  4. Mok PS, Ch'ng DH, Ong SP, Numata K, Sudesh K
    AMB Express, 2016 Dec;6(1):97.
    PMID: 27730572
    Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] is one of the polyhydroxyalkanoate (PHA) copolymers which can be degraded by lipases. In this study, the depolymerizing activity of different known commercial lipases was investigated via microassay using P(3HB-co-92 mol % 4HB) thin film as substrate. Non-enzymatic hydrolysis occurred under conditions in which buffers with pH 12 and 13 were added or temperature of 50 °C and above. Different concentrations of metal ions or detergents alone did not cause the film hydrolysis. The depolymerizing activity of lipases on P(3HB-co-4HB) was optimum in the pH range of 6-8 and at temperatures between 30 and 50 °C. Addition of metal ions and detergents in different concentrations was also shown to cause variable effects on the depolymerizing activity of commercial lipases. Pancreatic extracts from both mouse and chicken showed similar depolymerizing activity as the commercial lipases on the P(3HB-co-4HB) film. The presence of lipolytic enzymes in the organ extracts was confirmed with another lipase activity assay, p-nitrophenyl laurate assay. For the first time this has produced a direct evidence for the involvement of lipase-like enzymes from animal in the degradation of this PHA. Lipase is most likely the enzyme from pancreas that was involved in the degradation.
  5. Qin S, Chen M, Cheng AL, Kaseb AO, Kudo M, Lee HC, et al.
    Lancet, 2023 Nov 18;402(10415):1835-1847.
    PMID: 37871608 DOI: 10.1016/S0140-6736(23)01796-8
    BACKGROUND: No adjuvant treatment has been established for patients who remain at high risk for hepatocellular carcinoma recurrence after curative-intent resection or ablation. We aimed to assess the efficacy of adjuvant atezolizumab plus bevacizumab versus active surveillance in patients with high-risk hepatocellular carcinoma.

    METHODS: In the global, open-label, phase 3 IMbrave050 study, adult patients with high-risk surgically resected or ablated hepatocellular carcinoma were recruited from 134 hospitals and medical centres in 26 countries in four WHO regions (European region, region of the Americas, South-East Asia region, and Western Pacific region). Patients were randomly assigned in a 1:1 ratio via an interactive voice-web response system using permuted blocks, using a block size of 4, to receive intravenous 1200 mg atezolizumab plus 15 mg/kg bevacizumab every 3 weeks for 17 cycles (12 months) or to active surveillance. The primary endpoint was recurrence-free survival by independent review facility assessment in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, NCT04102098.

    FINDINGS: The intention-to-treat population included 668 patients randomly assigned between Dec 31, 2019, and Nov 25, 2021, to either atezolizumab plus bevacizumab (n=334) or to active surveillance (n=334). At the prespecified interim analysis (Oct 21, 2022), median duration of follow-up was 17·4 months (IQR 13·9-22·1). Adjuvant atezolizumab plus bevacizumab was associated with significantly improved recurrence-free survival (median, not evaluable [NE]; [95% CI 22·1-NE]) compared with active surveillance (median, NE [21·4-NE]; hazard ratio, 0·72 [adjusted 95% CI 0·53-0·98]; p=0·012). Grade 3 or 4 adverse events occurred in 136 (41%) of 332 patients who received atezolizumab plus bevacizumab and 44 (13%) of 330 patients in the active surveillance group. Grade 5 adverse events occurred in six patients (2%, two of which were treatment related) in the atezolizumab plus bevacizumab group, and one patient (<1%) in the active surveillance group. Both atezolizumab and bevacizumab were discontinued because of adverse events in 29 patients (9%) who received atezolizumab plus bevacizumab.

    INTERPRETATION: Among patients at high risk of hepatocellular carcinoma recurrence following curative-intent resection or ablation, recurrence-free survival was improved in those who received atezolizumab plus bevacizumab versus active surveillance. To our knowledge, IMbrave050 is the first phase 3 study of adjuvant treatment for hepatocellular carcinoma to report positive results. However, longer follow-up for both recurrence-free and overall survival is needed to assess the benefit-risk profile more fully.

    FUNDING: F Hoffmann-La Roche/Genentech.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links