Tilapia is a popular freshwater fish and among the important cultured fish grown worldwide. In this study, fish protein
hydrolysate was produced from tilapia (Oreochromis niloticus) by-product (TB) and tilapia muscle (TM) through enzymatic
hydrolysis using alcalase. The TB and TM protein hydrolysates were evaluated for its characteristics in terms of angiotensin
I-converting enzyme (ACE) inhibition activity, peptide size distribution, and functional properties. Hydrolysis for 1 h for
TB and TM successfully produced low molecular weight peptides (<14.2kDa) with the highest ACE inhibitory activities.
The findings also demonstrated that both samples have high nitrogen solubility (>80% at pH2-9) and good emulsifying,
water and oil holding capacities. The study indicated that tilapia protein hydrolysates have the potential to be used as
functional food products.
Numerical studies of blood flow system of aorta coronary sinus conduit were carried out using ANSYSTMCFD simulation. A different model of conduit, which differs in the inlet diameter, was investigated. Theinvestigated inlet diameters are 3 mm, 4 mm and 5 mm. Pressure drop from 80 mmHg to 15 mmHgwas achieved for all the models. The comparison chart was produced to compare the pattern of pressurereduction as well as velocity distribution in each model. From the analysis of coronary sinus conduit,it was found that a narrow tube needs to be incorporated into the conduit produced. This is to inducea venturi effect to reduce the pressure drop of blood within a specific throat length. As conclusion, amodel of 3 mm inlet and a throat diameter of 1.13 mm show satisfactory result for pressure reductionfrom 80 mmHg to 15 mmHg. This particular model also has a lower peak velocity at the inlet zone ofthe throat section, which is more preferable in terms of Reynolds number.
Fish protein hydrolysate was prepared from tilapia muscle using commercial Alcalase enzyme. Optimization of enzymatic hydrolysis process for preparing tilapia muscle protein hydrolysates (TMPH) was performed by employing central composite design (CCD) method of response surface methodology (RSM). O-phtaldialdehyde (OPA) method was employed to calculate the degree of hydrolysis (DH), which is the key parameter for monitoring the reaction of protein hydrolysis. The suggested model equation was proposed based on the effects of pH, temperature, substrate concentration and enzyme concentration on the DH. Optimum enzymatic hydrolysis conditions using Alcalase enzyme were obtained at pH7.5, temperature of 50oC, substrate concentration of 2.5% and enzyme concentration of 4.0%. Under these conditions, the highest value of the DH was achieved at 25.16% after hydrolysing at 120 min. The TMPH was further assessed for their nutritional value with respect to chemical and amino acid compositions. Molecular weight distributions of TMPH were characterized by SDS-PAGE. TMPH contains moderate amount of protein (28.14%) and good nutritive value with respect to the higher total amino acid composition (267.57 mg/g). Glutamic acid, aspartic acid and lysine were the most abundant amino acids present in TMPH with values 42.68, 29.16 and 26.21 mg/g, respectively. Protein hydrolysates from tilapia muscle containing a desirable peptide with low molecular weight which may potentially to be used as functional food products.