Displaying all 8 publications

Abstract:
Sort:
  1. Koh PC, Noranizan MA, Karim R, Nur Hanani ZA
    J Food Sci Technol, 2019 May;56(5):2563-2575.
    PMID: 31168138 DOI: 10.1007/s13197-019-03739-0
    Fresh-cut fruits are popular due to the convenience provided. However, fresh-cut processes damage fruit tissues and reduce the shelf life of products. Pulsed light (PL) treatment is a decontamination method of foods. PL treatment given repetitively at a certain interval during storage could further extend the shelf life of fresh-cut fruits. Edible coating preserves fresh-cut fruits by providing mechanical strength and reducing respiration and water loss. This study was to evaluate the effects of alginate coating combined with repetitive pulsed light (RPL) on sensory quality and flavour of fresh-cut cantaloupes during storage. Cantaloupes were treated with alginate (1.86%, w/v) and RPL (0.9 J/cm2 at every 48 h up to 26 days) alone or in combination. Flavour analysis of fresh-cut cantaloupes was carried out every 12 days during storage at 4 ± 1 °C while sensory analysis was performed on day 32. Alginate coating and/or RPL retained sugar contents (17.92-20.01 g/kg FW for fructose, 18.77-19.98 g/kg FW for glucose and 23.02-29.41 g/kg FW for sucrose) in fresh-cut cantaloupes during storage. Combination of alginate with RPL reduced accumulation of lactic acid although alginate coating was more effective to minimise changes of other organic acids in fresh-cut cantaloupes. The combined treatment was also more effective than individual treatment in retaining total aroma compound concentration of fresh-cut cantaloupes during storage with the highest relative concentration, i.e. 3.174 on day 36. Overall, the combined alginate coating and RPL was effective to maintain the fresh-like sensory quality of fresh-cut cantaloupes with insignificant overall acceptability compared to the control.
  2. Nordin NL, Sulaiman R, Bakar J, Noranizan MA
    Foods, 2023 Jun 01;12(11).
    PMID: 37297477 DOI: 10.3390/foods12112233
    The peel and core discarded from the processing of MD2 pineapple have the potential to be valorized. This study evaluated the functional and volatile compounds in the extracts of MD pineapple peel and core (MD2-PPC). The total soluble solids, pH, titratable acidity, sweetness index, and astringency index were 9.34 °Brix, 4.00, 0.74%, 12.84, and 0.08, respectively, for the peel and 12.00 °Brix, 3.96, 0.32%, 37.66, and 0.03, respectively, for the core. The fat and protein contents of the peel and core were found to be significantly different (p < 0.05). The total phenolic (TPC) and flavonoid contents (TFC) were significantly higher in the peel. The peel also showed better antioxidant activity, with a half-maximal inhibitory concentration (IC50) of 0.63 mg/mL for DPPH free radical activity compared with the core. The TPC of different phenolic fractions from peel extract was highest in the glycosylated fraction, followed by the esterified, insoluble-bound, and free phenolic fractions. GC-MS analysis identified 38 compounds in the peel and 23 in the core. The primary volatile compounds were 2-furan carboxaldehyde, 5-(hydroxymethyl), and 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP). The identification of phenolics and volatile compounds provides important insights into the valorization of (MD2-PPC) waste.
  3. Koh PC, Noranizan MA, Karim R, Nur Hanani ZA
    J Food Sci Technol, 2016 Apr;53(4):1798-810.
    PMID: 27413207 DOI: 10.1007/s13197-015-2139-y
    The aim of this study was to investigate the effect of cut type and pulsed light (PL) fluence on microbiological stability and quality of fresh-cut cantaloupes. Fresh-cut cantaloupes with various cut types (cuboid, triangular prism and sphere) were treated with PL technology at 6 J/cm(2). Samples were exposed to PL treatment at fluences of 2.7, 7.8, 11.7 and 15.6 J/cm(2) followed by storage at 4 ± 1 °C for 28 days. Microbiological quality, headspace composition, firmness, colour, pH, titratable acidity, total soluble solids, total phenolic content and ascorbic acid content of fresh-cut cantaloupes were determined. Spherical shape was found to be the most suitable shape for PL treatment of fresh-cut cantaloupes due to its significantly lowest (p ≤ 0.05) microbial counts before and after the PL treatment. No significant (p > 0.05) effect was observed for firmness, colour, total soluble solids and total phenolic content of fresh-cut cantaloupes throughout the storage study. Pulsed light treatment using 7.8 J/cm(2) was the best for extending shelf life of fresh-cut cantaloupes with extension of 8 days longer at 4 ± 1 °C compared to the control while maintaining the ascorbic acid content. In conclusion, PL treatment is a potential technique for extending the shelf life of fresh-cut cantaloupes by inactivating microorganisms without compromising the nutritional value.
  4. Koh PC, Noranizan MA, Karim R, Nur Hanani ZA, Yusof NL
    J Food Sci Technol, 2020 Jun;57(6):2206-2221.
    PMID: 32431347 DOI: 10.1007/s13197-020-04257-0
    This study was to investigate the effects of optimised alginate coating combined with repetitive pulsed light (RPL) on cell wall composition of fresh-cut cantaloupes during chilled storage. Fresh-cut cantaloupes were coated with alginate (1.86%, w/v) followed by RPL treatment (0.9 J cm-2 at every 48 h up to 26 days) during storage of 36 days. Cell wall composition of fresh-cut cantaloupes was determined at every 12 days while microscopic analysis was conducted on day 2 and day 36. Alginate was effective in maintaining high pectin fractions of fresh-cut cantaloupes while RPL showed greater contribution in maintaining hemicellulose fraction. However, the combination of alginate and RPL was the most effective treatment to maintain the overall cell wall fractions that contributed to the cell wall integrity of fresh-cut cantaloupes during storage. The alginate + RPL samples also had the greatest cell turgidity and shape with well-defined cell walls at the end of storage.
  5. Rosli SZ, Noranizan MA, Radu S, Karim R, Mohd Adzahan N, Aadil RM, et al.
    J Food Sci Technol, 2022 Mar;59(3):1211-1220.
    PMID: 35153331 DOI: 10.1007/s13197-021-05131-3
    Fresh pennywort (Centella asiatica) is usually eaten raw as 'ulam' or salad-like lettuce. Unfortunately, the fresh pennywort has the potential to cause foodborne outbreaks due to pathogens present on the surface and between the leaves, as washing the pennywort using tap water alone cannot guarantee that the pathogens are eliminated. Thus, the efficacies of several sanitizing solutions, i.e., sodium chloride, sodium hypochlorite, acetic acid, acidic electrolyzed water (acidic EW), alkaline electrolyzed water (alkaline EW), and a combination of acidic EW and alkaline EW (acidic-alkaline EW), were evaluated for their potential applications as washing solutions for pennywort. Washing using acidic EW alone or in combination with alkaline EW (two-step washing) reduced the microbial count. In sensory evaluation, all sanitizer solutions were accepted by the panellists with a score greater than 5, except those washing with acetic acid. Overall, the use of acidic EW, either alone or in combination with alkaline EW, was the best treatment to decontaminate microbes while maintaining the physicochemical and sensory properties of pennywort leaves.
  6. Soraya A, Chay SY, Shukri R, Mohamad Ghazali F, Muhammad K, Noranizan MA, et al.
    J Food Sci Technol, 2019 Apr;56(4):1801-1810.
    PMID: 30996416 DOI: 10.1007/s13197-019-03624-w
    Pulsed-UV is an emerging innovation in non-thermal processing and is scarcely explored. This study introduces a combined treatment of microwave and pulsed-UV to reduce the microbial load in yellow alkaline noodle (YAN), a popular staple food among South East Asians that is easily perishable, without jeopardising its textural qualities. Results indicated that the combination of 5 s microwave (power = 900 W; frequency = 2450 MHz) and 3.5 J/cm2 pulsed-UV significantly reduced aerobic plate count and spore forming bacteria, from 637.5 to 50 CFU/g and 1500 to 100 CFU/g, respectively. In terms of textural properties, even though significant changes were detected in hardness and springiness for treated YAN kept at ambient storage as compared to control, the alterations were not prominent. Based on these observations, it is concluded that a combined treatment of microwave and pulsed-UV successfully improved the shelf life of YAN at ambient storage by 50%, from 1.0 day (control) to 1.5 days (treated sample) and by 140%, from 2.0 to 4.8 weeks at chilled storage. Current study proves the potential of microwave + pulsed-UV, a "green" hurdle treatment, to extend the shelf life of preservative-free YAN without causing major undesirable textural alterations on the noodle.
  7. Nur Fatin Nazurah R, Noranizan MA, Nor-Khaizura MAR, Nur Hanani ZA
    Int J Biol Macromol, 2024 Jul;273(Pt 2):132972.
    PMID: 38876241 DOI: 10.1016/j.ijbiomac.2024.132972
    The use of essential oils as natural antioxidant, antimicrobial and insect repellent agent was limited by the loss of bioactive components especially volatile compounds. This study aimed to improve biological properties of curry leaf essential oil (CLEO) by producing nanometer sized particles through two different synthesis techniques; nanoencapsulation and nanoprecipitation. The methods produced different nanostructures; nanocapsules and nanospheres distinguished by the morphological structure (TEM analysis). Successful loading of CLEO into chitosan nanocarrier was proven by FTIR spectra. Zeta potential values for both nanostructures were more than +30 mV implying their stability against aggregation. CLEO loaded nanocapsules exhibited highest antibacterial properties against Gram-positive bacteria compared to nanospheres. Meanwhile, CLEO loaded nanospheres recorded up until 90.44 % DPPH radical scavenging properties, higher compared to nanocapsules. Both nanostructures demonstrated further improvement in antioxidant and antibacterial activities with the incorporation of higher chitosan concentration. In vitro release analysis indicated that CLEO undergo two-stage discharge mechanism where fast discharge occurred up until 12 h followed by sustained released afterwards. The two synthesis methods applied synergistically with greater chitosan concentration successfully produced nanostructures with >60 % encapsulation efficiency (EE). This concluded that both techniques were reliable to protect the bioactive constituents of CLEO for further used.
  8. Han Lyn F, Ismail-Fitry MR, Noranizan MA, Tan TB, Nur Hanani ZA
    Int J Biol Macromol, 2024 May;266(Pt 2):131340.
    PMID: 38574927 DOI: 10.1016/j.ijbiomac.2024.131340
    This review article provides a comprehensive overview of recent progress in polylactic acid (PLA) extrusion, emphasizing its applications in food packaging. PLA has witnessed a significant rise in demand, particularly within the food packaging sector. A notable increase in research publications has been observed in recent years, exploring the extrusion of PLA and PLA-based composite films. In comparison to conventional techniques such as solvent casting, extrusion offers advantages in scalability and environmental sustainability, especially for industrial-scale production. The benefits of this method include faster drying times, enhanced flexibility, consistent film thickness, and less structural defects. Extensive research has focused on the effect of various PLA blends on film properties, including flexibility, elongation, and barrier properties against water vapour and gases. Furthermore, the incorporation of compounds such as antioxidants, antimicrobials, and natural pigments has enabled the development of active and intelligent PLA-based packaging. This article summarizes the types of additives employed to enhance the physicochemical properties of extruded PLA and film performance. Additionally, this article explores the diverse applications of extruded PLA in active and intelligent packaging for various food products.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links