Displaying all 6 publications

Abstract:
Sort:
  1. Azrin NAM, Ali MSM, Rahman RNZRA, Oslan SN, Noor NDM
    Biotechnol Appl Biochem, 2022 Dec;69(6):2599-2616.
    PMID: 35019178 DOI: 10.1002/bab.2309
    Due to its thermostability and high pH compatibility, subtilisin is most known for its role as an additive for detergents in which it is categorized as a serine protease according to MEROPS database. Subtilisin is typically isolated from various bacterial species of the Bacillus genus such as Bacillus subtilis, B. amyloliquefaciens, B. licheniformis, and various other organisms. It is composed of 268-275 amino acid residues and is initially secreted in the precursor form, preprosubtilisin, which is composed of 29-residues signal peptide, 77-residues propeptide, and 275-residues active subtilisin. Subtilisin is known for the presence of high and low affinity calcium binding sites in its structure. Native subtilisin has general properties of thermostability, tolerance to neutral to high pH, broad specificity, and calcium-dependent stability, which contribute to the versatility of subtilisin applicability. Through protein engineering and immobilization technologies, many variants of subtilisin have been generated, which increase the applicability of subtilisin in various industries including detergent, food processing and packaging, synthesis of inhibitory peptides, therapeutic, and waste management applications.
  2. Balakrishnan S, Rahman RNZRA, Noor NDM, Latip W, Ali MSM
    J Biomol Struct Dyn, 2023;41(21):11498-11509.
    PMID: 36598349 DOI: 10.1080/07391102.2022.2164519
    Aquaporin is a water channel protein that facilitates the movement of water across the cell membrane. Aquaporin from the Antarctic region has been noted for its psychrophilic properties and its ability to perform at a lower temperature but there remains limited understanding of the water mechanism of Antarctic Pseudomonas sp. strain AMS3 However, studies regarding aquaporin isolated from psychrophilic Pseudomonas sp. are still scattered. Recently, the genome sequence of an Antarctic Pseudomonas sp. strain AMS3 revealed a gene sequence encoding for a putative aquaporin designated as AqpZ1 AMS3. In this study, structure analysis and a molecular dynamics (MD) simulation of a predicted model of a fully hydrated aquaporin tetramer embedded in a lipid bilayer was performed at different temperatures for structural flexibility and stability analysis. The MD simulation results revealed that the structures were able to remain stable at low to medium temperatures. The protein was observed to have high flexibility in the loop region as compared to the helices region throughout the simulated temperatures. The selectivity filter and NPA motifs play a major role in solute selectivity and the pore radius of the protein. The structural and functional characterization of this psychrophilic aquaporin provides new insights for the future applications of this protein.Communicated by Ramaswamy H. Sarma.
  3. Azman AA, Leow ATC, Noor NDM, Noor SAM, Latip W, Ali MSM
    Int J Biol Macromol, 2024 Jan;256(Pt 2):128230.
    PMID: 38013072 DOI: 10.1016/j.ijbiomac.2023.128230
    Metallo-β-lactamase (MBL) is an enzyme produced by clinically important bacteria that can inactivate many commonly used antibiotics, making them a significant concern in treating bacterial infections and the risk of having high antibiotic resistance issues among the community. This review presents a bibliometric and patent analysis of MBL worldwide research trend based on the Scopus and World Intellectual Property Organization databases in 2013-2022. Based on the keywords related to MBL in the article title, abstract, and keywords, 592 research articles were retrieved for further analysis using various tools such as Microsoft Excel to determine the frequency analysis, VOSviewer for bibliometric networks visualization, and Harzing's Publish or Perish for citation metrics analysis. Standard bibliometric parameters were analysed to evaluate the field's research trend, such as the growth of publications, topographical distribution, top subject area, most relevant journal, top cited documents, most relevant authors, and keyword trend analysis. Within 10 years, MBL discovery has shown a steady and continuous growth of interest among the community of researchers. United States of America, China, and the United Kingdom are the top 3 countries contribute high productivity to the field. The patent analysis also shows several impactful filed patents, indicating the significance of development research on the structural and functional relationship of MBL for an effective structure-based drug design (SBDD). Developing new MBL inhibitors using SBDD could help address the research gap and provide new successful therapeutic options for treating MBL-producing bacterial infections.
  4. Omar MN, Rahman RNZRA, Noor NDM, Latip W, Knight VF, Ali MSM
    J Biomol Struct Dyn, 2024 Mar 31.
    PMID: 38555730 DOI: 10.1080/07391102.2024.2331093
    Aminopeptidase P (APPro) is a crucial metalloaminopeptidase involved in amino acid cleavage from peptide N-termini, playing essential roles as versatile biocatalysts with applications ranging from pharmaceuticals to industrial processes. Despite acknowledging its potential for catalysis in lower temperatures, detailed molecular basis and biotechnological implications in cold environments are yet to be explored. Therefore, this research aims to investigate the molecular mechanisms underlying the cold-adapted characteristics of APPro from Pseudomonas sp. strain AMS3 (AMS3-APPro) through a detailed analysis of its structure and dynamics. In this study, structure analysis and molecular dynamics (MD) simulation of a predicted model of AMS3-APPro has been performed at different temperatures to assess structural flexibility and thermostability across a temperature range of 0-60 °C over 100 ns. The MD simulation results revealed that the structure were able to remain stable at low temperatures. Increased temperatures present a potential threat to the overall stability of AMS3-APPro by disrupting the intricate hydrogen bond networks crucial for maintaining structural integrity, thereby increasing the likelihood of protein unfolding. While the metal binding site at the catalytic core exhibits resilience at higher temperatures, highlighting its local structural integrity, the overall enzyme structure undergoes fluctuations and potential denaturation. This extensive structural instability surpasses the localized stability observed at the metal binding site. Consequently, these assessments offer in-depth understanding of the cold-adapted characteristics of AMS3-APPro, highlighting its capability to uphold its native conformation and stability in low-temperature environments. In summary, this research provides valuable insights into the cold-adapted features of AMS3-APPro, suggesting its efficient operation in low thermal conditions, particularly relevant for potential biotechnological applications in cold environments.Communicated by Ramaswamy H. Sarma.
  5. Lim SJ, Noor NDM, Sabri S, Ali MSM, Salleh AB, Oslan SN
    Microb Pathog, 2024 Aug;193:106773.
    PMID: 38960213 DOI: 10.1016/j.micpath.2024.106773
    Meyerozyma guilliermondii (Candida guilliermondii) is one of the Candida species associated with invasive candidiasis. With the potential for expressing industrially important enzymes, M. guilliermondii strain SO possessed 99 % proteome similarity with the clinical ATCC 6260 isolate and showed pathogenicity towards zebrafish embryos. Recently, three secreted aspartyl proteinases (SAPs) were computationally identified as potential virulence factors in this strain without in vitro verification of SAP activity. The quantification of Candida SAPs activity in liquid broth were also scarcely reported. Thus, this study aimed to characterize M. guilliermondii strain SO's ability to produce SAPs (MgSAPs) in different conditions (morphology and medium) besides analyzing its growth profile. MgSAPs' capability to cleave bovine serum albumin (BSA) was also determined to propose that MgSAPs as the potential virulence factors compared to the avirulent Saccharomyces cerevisiae. M. guilliermondii strain SO produced more SAPs (higher activity) in yeast nitrogen base-BSA-dextrose broth compared to yeast extract-BSA-dextrose broth despite insignificantly different SAP activity in both planktonic and biofilm cells. FeCl3 supplementation significantly increased the specific protein activity (∼40 %). The BSA cleavage by MgSAPs at an acidic pH was proven through semi-quantitative SDS-PAGE, sharing similar profile with HIV-1 retropepsin. The presented work highlighted the MgSAPs on fungal cell wall and extracellular milieu during host infection could be corroborated to the quantitative production in different growth modes presented herein besides shedding lights on the potential usage of retropepsin's inhibitors in treating candidiasis. Molecular and expression analyses of MgSAPs and their deletion should be further explored to attribute their respective virulence effects.
  6. Ong SN, Kamarudin NHA, Shariff FM, Noor NDM, Ali MSM, Rahman RNZRA
    J Biomol Struct Dyn, 2023 Nov 15.
    PMID: 37968883 DOI: 10.1080/07391102.2023.2282177
    The stability and activity of lipase in organic media are important parameters in determining how quickly biocatalysis proceeds. This study aimed to examine the effects of two commonly used alcohols in industrial applications, methanol (MtOH) and ethanol (EtOH) on the conformational stability and catalytic activity of G210C lipase, a laboratory-evolved mutant of Staphylococcus epidermidis AT2 lipase. Simulation studies were performed using an open-form predicted structure under 30, 40 and 50% of MtOH and EtOH at 25 °C and 45 °C. The overall enzyme structure becomes more flexible with increasing concentration of MtOH and exhibited the highest flexibility in 40% EtOH. In EtOH, the movement of the lid was found to be temperature-dependent with a noticeable shift in the lid position at 45 °C. Lid opening was evidenced at 50% of MtOH and EtOH which was supported by the increase in SASA of hydrophobic residues of the lid and catalytic triad. The active site remained mostly intact. An open-closed lid transition was observed when the structure was re-simulated in water. Experimental evaluation of the lipase stability showed that the half-life reduced when the enzyme was treated with 40% (v/v) and 50% (v/v) of EtOH and MtOH respectively. The finding implies that a high concentration of alcohol and elevated temperature can induce the lid opening of lipase which could be essential for the activation of the enzyme, provided that the catalytic performance in the active site is not compromised.Communicated by Ramaswamy H. Sarma.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links