Displaying all 3 publications

Abstract:
Sort:
  1. Nokhala A, Siddiqui MJ
    J Pharm Bioallied Sci, 2020 07 18;12(3):217-222.
    PMID: 33100780 DOI: 10.4103/jpbs.JPBS_192_19
    Tetracera scandens is a southeast Asian shrub that belongs to family Dilleniaceae. Over the years, different parts of the plant have been used for the management of different diseases, including diabetes mellitus, hypertension, rheumatism, diarrhea, hepatitis, and inflammation. This variety of medical indications has attracted the attention of many researchers to this plant species, leading to the conduction of many research studies on different parts of the plant. These studies have confirmed some of the aforementioned activities of the plant, whereas other indications remain to be ascertained. This article is an attempt to summarize the studies conducted on T. scandens and to explore the isolated phytochemicals.
  2. Nokhala A, Siddiqui MJ, Ahmed QU, Ahamad Bustamam MS, Zakaria AZA
    Biomolecules, 2020 02 12;10(2).
    PMID: 32059529 DOI: 10.3390/biom10020287
    Stone leaf (Tetracera scandens) is a Southeast Asian medicinal plant that has been traditionally used for the management of diabetes mellitus. The underlying mechanisms of the antidiabetic activity have not been fully explored yet. Hence, this study aimed to evaluate the α-glucosidase inhibitory potential of the hydromethanolic extracts of T. scandens leaves and to characterize the metabolites responsible for such activity through gas chromatography-mass spectrometry (GC-MS) metabolomics. Crude hydromethanolic extracts of different strengths were prepared and in vitro assayed for α-glucosidase inhibition. GC-MS analysis was further carried out and the mass spectral data were correlated to the corresponding α-glucosidase inhibitory IC50 values via an orthogonal partial least squares (OPLS) model. The 100%, 80%, 60% and 40% methanol extracts displayed potent α-glucosidase inhibitory potentials. Moreover, the established model identified 16 metabolites to be responsible for the α-glucosidase inhibitory activity of T. scandens. The putative α-glucosidase inhibitory metabolites showed moderate to high affinities (binding energies of -5.9 to -9.8 kcal/mol) upon docking into the active site of Saccharomyces cerevisiae isomaltase. To sum up, an OPLS model was developed as a rapid method to characterize the α-glucosidase inhibitory metabolites existing in the hydromethanolic extracts of T. scandens leaves based on GC-MS metabolite profiling.
  3. Aslam A, Nokhala A, Peerzada S, Ahmed S, Khan T, Siddiqui MJ
    J Pharm Bioallied Sci, 2020 Nov;12(Suppl 2):S777-S780.
    PMID: 33828377 DOI: 10.4103/jpbs.JPBS_243_19
    Aims and Objectives: The present study was aimed to evaluate the antiinflammatory effect of different seed extracts of Trachyspermum ammi at different doses.

    Materials and Methods: Three different seed extracts were prepared through Soxhlet extraction method by using n-hexane, chloroform and methanol solvents. Acute toxicity test performed at dose of 400 mg/ kg, 800 mg/kg, 1600 mg/kg and 3200 mg/kg. Two different strengths of seed extracts (minimum therapeutic dose of 500 mg/kg and maximum therapeutic dose of 1000 mg/kg) were given to Wistar rats to measure anti-inflammatory activity through Carrageenan induced paw edema method.

    Results: The standard drug diclofenac sodium was (percentage of inhibition of paw edema 29.68%) more effective as compared to test drug. When efficacy of all extracts compared with each other, n-hexane extract showed more anti-inflammatory effect (percentage inhibition of paw edema 22.21%) at maximum effective dose 1000 mg/kg.

    Conclusion: Seed extracts of T. ammi showed anti-inflammatory activity by potentiating the neurotransmission of GABA and also by repression glutamate receptor.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links