Displaying all 10 publications

Abstract:
Sort:
  1. Sim KS, Nia ME, Tso CP
    Scanning, 2013 May-Jun;35(3):205-12.
    PMID: 22961698 DOI: 10.1002/sca.21055
    A number of techniques have been proposed during the last three decades for noise variance and signal-to-noise ratio (SNR) estimation in digital images. While some methods have shown reliability and accuracy in SNR and noise variance estimations, other methods are dependent on the nature of the images and perform well on a limited number of image types. In this article, we prove the accuracy and the efficiency of the image noise cross-correlation estimation model, vs. other existing estimators, when applied to different types of scanning electron microscope images.
  2. Sim KS, Nia ME, Tso CP
    Scanning, 2011 Mar-Apr;33(2):82-93.
    PMID: 21381045 DOI: 10.1002/sca.20223
    A new and robust parameter estimation technique, named image noise cross-correlation, is proposed to predict the signal-to-noise ratio (SNR) of scanning electron microscope images. The results of SNR and variance estimation values are tested and compared with nearest neighborhood and first-order interpolation. Overall, the proposed method is best as its estimations for the noise-free peak and SNR are most consistent and accurate to within a certain acceptable degree, compared with the others.
  3. Sim KS, Teh V, Nia ME
    Scanning, 2016 Mar;38(2):148-63.
    PMID: 26235517 DOI: 10.1002/sca.21250
    Noise on scanning electron microscope (SEM) images is studied. Gaussian noise is the most common type of noise in SEM image. We developed a new noise reduction filter based on the Wiener filter. We compared the performance of this new filter namely adaptive noise Wiener (ANW) filter, with four common existing filters as well as average filter, median filter, Gaussian smoothing filter and the Wiener filter. Based on the experiments results the proposed new filter has better performance on different noise variance comparing to the other existing noise removal filters in the experiments. SCANNING 38:148-163, 2016. © 2015 Wiley Periodicals, Inc.
  4. Kiani MA, Sim KS, Nia ME, Tso CP
    J Microsc, 2015 May;258(2):140-50.
    PMID: 25676007 DOI: 10.1111/jmi.12227
    A new technique based on cubic spline interpolation with Savitzky-Golay smoothing using weighted least squares error filter is enhanced for scanning electron microscope (SEM) images. A diversity of sample images is captured and the performance is found to be better when compared with the moving average and the standard median filters, with respect to eliminating noise. This technique can be implemented efficiently on real-time SEM images, with all mandatory data for processing obtained from a single image. Noise in images, and particularly in SEM images, are undesirable. A new noise reduction technique, based on cubic spline interpolation with Savitzky-Golay and weighted least squares error method, is developed. We apply the combined technique to single image signal-to-noise ratio estimation and noise reduction for SEM imaging system. This autocorrelation-based technique requires image details to be correlated over a few pixels, whereas the noise is assumed to be uncorrelated from pixel to pixel. The noise component is derived from the difference between the image autocorrelation at zero offset, and the estimation of the corresponding original autocorrelation. In the few test cases involving different images, the efficiency of the developed noise reduction filter is proved to be significantly better than those obtained from the other methods. Noise can be reduced efficiently with appropriate choice of scan rate from real-time SEM images, without generating corruption or increasing scanning time.
  5. Sim KS, Kiani MA, Nia ME, Tso CP
    J Microsc, 2014 Jan;253(1):1-11.
    PMID: 24164248 DOI: 10.1111/jmi.12089
    A new technique based on cubic spline interpolation with Savitzky-Golay noise reduction filtering is designed to estimate signal-to-noise ratio of scanning electron microscopy (SEM) images. This approach is found to present better result when compared with two existing techniques: nearest neighbourhood and first-order interpolation. When applied to evaluate the quality of SEM images, noise can be eliminated efficiently with optimal choice of scan rate from real-time SEM images, without generating corruption or increasing scanning time.
  6. Sim KS, Nia ME, Tso CP, Lim WK
    J Microsc, 2012 Nov;248(2):120-8.
    PMID: 22900970 DOI: 10.1111/j.1365-2818.2012.03657.x
    A new technique for estimation of signal-to-noise ratio in scanning electron microscope images is reported. The method is based on the image noise cross-correlation estimation model recently developed. We derive the basic performance limits on a single image signal-to-noise ratio estimation using the Cramer-Rao inequality. The results are compared with those from existing estimation methods including the nearest neighbourhood (the simple method), the first order linear interpolator, and the autoregressive based estimator. The comparisons were made using several tests involving different images within the performance bounds. From the results obtained, the efficiency and accuracy of image noise cross-correlation estimation technique is considerably better than the other three methods.
  7. Lo TY, Sim KS, Tso CP, Nia ME
    Scanning, 2014 Sep-Oct;36(5):530-9.
    PMID: 25139061 DOI: 10.1002/sca.21152
    An improvement to the previously proposed adaptive Canny optimization technique for scanning electron microscope image colorization is reported. The additional feature, called pseudo-mapping technique, is that the grayscale markings are temporarily mapped to a set of pre-defined pseudo-color map as a mean to instill color information for grayscale colors in chrominance channels. This allows the presence of grayscale markings to be identified; hence optimization colorization of grayscale colors is made possible. This additional feature enhances the flexibility of scanning electron microscope image colorization by providing wider range of possible color enhancement. Furthermore, the nature of this technique also allows users to adjust the luminance intensities of selected region from the original image within certain extent.
  8. Sim KS, Chia FK, Nia ME, Tso CP, Chong AK, Abbas SF, et al.
    Comput Biol Med, 2014 Jun;49:46-59.
    PMID: 24736203 DOI: 10.1016/j.compbiomed.2014.03.003
    A computer-aided detection auto-probing (CADAP) system is presented for detecting breast lesions using dynamic contrast enhanced magnetic resonance imaging, through a spatial-based discrete Fourier transform. The stand-alone CADAP system reduces noise, refines region of interest (ROI) automatically, and detects the breast lesion with minimal false positive detection. The lesions are then classified and colourised according to their characteristics, whether benign, suspicious or malignant. To enhance the visualisation, the entire analysed ROI is constructed into a 3-D image, so that the user can diagnose based on multiple views on the ROI. The proposed method has been applied to 101 sets of digital images, and the results compared with the biopsy results done by radiologists. The proposed scheme is able to identify breast cancer regions accurately and efficiently.
  9. Sim KS, Kho YY, Tso CP, Nia ME, Ting HY
    Scanning, 2013 Mar-Apr;35(2):75-87.
    PMID: 22777599 DOI: 10.1002/sca.21037
    Detection of cracks from stainless steel pipe images is done using contrast stretching technique. The technique is based on an image filter technique through mathematical morphology that can expose the cracks. The cracks are highlighted and noise removal is done efficiently while still retaining the edges. An automated crack detection system with a camera platform has been successfully implemented. We compare crack extraction in terms of quality measures with those of Otsu's threshold technique and the another technique (Iyer and Sinha, 2005). The algorithm shown is able to achieve good results and perform better than these other techniques.
  10. Sim KS, Chong SS, Tso CP, Nia ME, Chong AK, Abbas SF
    Springerplus, 2014;3:268.
    PMID: 25045606 DOI: 10.1186/2193-1801-3-268
    Data analysis based on breast cancer risk factors such as age, race, breastfeeding, hormone replacement therapy, family history, and obesity was conducted on breast cancer patients using a new enhanced computerized database management system. My Structural Query Language (MySQL) is selected as the application for database management system to store the patient data collected from hospitals in Malaysia. An automatic calculation tool is embedded in this system to assist the data analysis. The results are plotted automatically and a user-friendly graphical user interface is developed that can control the MySQL database. Case studies show breast cancer incidence rate is highest among Malay women, followed by Chinese and Indian. The peak age for breast cancer incidence is from 50 to 59 years old. Results suggest that the chance of developing breast cancer is increased in older women, and reduced with breastfeeding practice. The weight status might affect the breast cancer risk differently. Additional studies are needed to confirm these findings.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links