Displaying all 15 publications

Abstract:
Sort:
  1. Ngah WS, Fatinathan S
    J Environ Sci (China), 2010;22(3):338-46.
    PMID: 20614774
    The study examined the adsorption of Pb(II) ions from aqueous solution onto chitosan, chitosan-GLA and chitosan-alginate beads. Several important parameters influencing the adsorption of Pb(II) ions such as initial pH, adsorbent dosage and different initial concentration of Pb(II) ions were evaluated. The mechanism involved during the adsorption process was explored based on ion exchange study and using spectroscopic techniques. The adsorption capacities obtained based on non-linear Langmuir isotherm for chitosan, chitosan-GLA and chitosan-alginate beads in single metal system were 34.98, 14.24 and 60.27 mg/g, respectively. However, the adsorption capacity of Pb(II) ions were reduced in the binary metal system due to the competitive adsorption between Pb(II) and Cu(II) ions. Based on the ion exchange study, the release of Ca2+, Mg2+, K+ and Na+ ions played an important role in the adsorption of Pb(II) ions by all three adsorbents but only at lower concentrations of Pb(II) ions. Infrared spectra showed that the binding between Pb(II) ions and the adsorbents involved mostly the nitrogen and oxygen atoms. All three adsorbents showed satisfactory adsorption capacities and can be considered as an efficient adsorbent for the removal of Pb(II) ions from aqueous solutions.
  2. Ngah WS, Fatinathan S
    J Environ Manage, 2010 Mar-Apr;91(4):958-69.
    PMID: 20044203 DOI: 10.1016/j.jenvman.2009.12.003
    Chitosan-tripolyphosphate (CTPP) beads were synthesized, characterized and were used for the adsorption of Pb(II) and Cu(II) ions from aqueous solution. The effects of initial pH, agitation period, adsorbent dosage, different initial concentrations of heavy metal ions and temperature were studied. The experimental data were correlated with the Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. The maximum adsorption capacities of Pb(II) and Cu(II) ions in a single metal system based on the Langmuir isotherm model were 57.33 and 26.06 mg/g, respectively. However, the beads showed higher selectivity towards Cu(II) over Pb(II) ions in the binary metal system. Various thermodynamic parameters such as enthalpy (DeltaH degrees), Gibbs free energy (DeltaG degrees) and entropy (DeltaS degrees) changes were computed and the results showed that the adsorption of both heavy metal ions onto CTPP beads was spontaneous and endothermic in nature. The kinetic data were evaluated based on the pseudo-first and -second order kinetic and intraparticle diffusion models. Infrared spectra were used to elucidate the mechanism of Pb(II) and Cu(II) ions adsorption onto CTPP beads.
  3. Kamari A, Ngah WS
    Colloids Surf B Biointerfaces, 2009 Oct 15;73(2):257-66.
    PMID: 19556114 DOI: 10.1016/j.colsurfb.2009.05.024
    The kinetic and thermodynamic adsorption and adsorption isotherms of Pb(II) and Cu(II) ions onto H(2)SO(4) modified chitosan were studied in a batch adsorption system. The experimental results were fitted using Freundlich, Langmuir and Dubinin-Radushkevich isotherms; the Langmuir isotherm showed the best conformity to the equilibrium data. The pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models were employed to analyze the kinetic data. The adsorption behavior of Pb(II) and Cu(II) was best described by the pseudo-second order model. Thermodynamic parameters such as free energy change (DeltaG degrees ), enthalpy change (DeltaH degrees ) and entropy change (DeltaS degrees ) were determined; the adsorption process was found to be both spontaneous and exothermic. No physical damage to the adsorbents was observed after three cycles of adsorption/desorption using EDTA and HCl as eluents. The mechanistic pathway of the Pb(II) and Cu(II) uptake was examined by means of Fourier transform infrared (FTIR) and Energy dispersive X-ray (EDX) spectroscopy. The equilibrium parameter (R(L)) indicated that chitosan-H(2)SO(4) was favorable for Pb(II) and Cu(II) adsorption.
  4. Wan Ngah WS, Hanafiah MA
    J Environ Sci (China), 2008;20(10):1168-76.
    PMID: 19143339
    The efficiency of sodium hydroxide treated rubber (Hevea brasiliensis) leaves powder (NHBL) for removing copper ions from aqueous solutions has been investigated. The effects of physicochemical parameters on biosorption capacities such as stirring speed, pH, biosorbent dose, initial concentrations of copper, and ionic strength were studied. The biosorption capacities of NHBL increased with increase in pH, stirring speed and copper concentration but decreased with increase in biosorbent dose and ionic strength. The isotherm study indicated that NHBL fitted well with Langmuir model compared to Freundlich and Dubinin-Radushkevich models. The maximum biosorption capacity determined from Langmuir isotherm was 14.97 mg/g at 27 degrees C. The kinetic study revealed that pseudosecond order model fitted well the kinetic data, while Boyd kinetic model indicated that film diffusion was the main rate determining step in biosorption process. Based on surface area analysis, NHBL has low surface area and categorized as macroporous. Fourier transform infrared (FT-IR) analyses revealed that hydroxyl, carboxyl, and amino are the main functional groups involved in the binding of copper ions. Complexation was one of the main mechanisms for the removal of copper ions as indicated by FT-IR spectra. Ion exchange was another possible mechanism since the ratio of adsorbed cations (Cu2+ and H+) to the released cations (Na+, Ca2+, and Mg2+) from NHBL was almost unity. Copper ions bound on NHBL were able to be desorbed at > 99% using 0.05 mol/L HCl, 0.01 mol/L HNO3, and 0.01 mol/L EDTA solutions.
  5. Wan Ngah WS, Hanafiah MA
    Bioresour Technol, 2008 Jul;99(10):3935-48.
    PMID: 17681755
    The application of low-cost adsorbents obtained from plant wastes as a replacement for costly conventional methods of removing heavy metal ions from wastewater has been reviewed. It is well known that cellulosic waste materials can be obtained and employed as cheap adsorbents and their performance to remove heavy metal ions can be affected upon chemical treatment. In general, chemically modified plant wastes exhibit higher adsorption capacities than unmodified forms. Numerous chemicals have been used for modifications which include mineral and organic acids, bases, oxidizing agent, organic compounds, etc. In this review, an extensive list of plant wastes as adsorbents including rice husks, spent grain, sawdust, sugarcane bagasse, fruit wastes, weeds and others has been compiled. Some of the treated adsorbents show good adsorption capacities for Cd, Cu, Pb, Zn and Ni.
  6. Ngah WS, Ab Ghani S, Kamari A
    Bioresour Technol, 2005 Mar;96(4):443-50.
    PMID: 15491825
    A batch adsorption system was applied to study the adsorption of Fe(II) and Fe(III) ions from aqueous solution by chitosan and cross-linked chitosan beads. The adsorption capacities and rates of Fe(II) and Fe(III) ions onto chitosan and cross-linked chitosan beads were evaluated. Chitosan beads were cross-linked with glutaraldehyde (GLA), epichlorohydrin (ECH) and ethylene glycol diglycidyl ether (EGDE) in order to enhance the chemical resistance and mechanical strength of chitosan beads. Experiments were carried out as function of pH, agitation period, agitation rate and concentration of Fe(II) and Fe(III) ions. Langmuir and Freundlich adsorption models were applied to describe the isotherms and isotherm constants. Equilibrium data agreed very well with the Langmuir model. The kinetic experimental data correlated well with the second-order kinetic model, indicating that the chemical sorption was the rate-limiting step. Results also showed that chitosan and cross-linked chitosan beads were favourable adsorbers.
  7. Wan Ngah WS, Kamari A, Koay YJ
    Int J Biol Macromol, 2004 Jun;34(3):155-61.
    PMID: 15225987
    The adsorption of Cu(II) ions from aqueous solution by chitosan and chitosan/PVA beads was studied in a batch adsorption system. Chitosan solution was blended with poly(vinyl alcohol) (PVA) in order to obtain sorbents that are insoluble in aqueous acidic and basic solution. The adsorption capacities and rates of Cu(II) ions onto chitosan and chitosan/PVA beads were evaluated. The Langmuir, Freundlich and BET adsorption models were applied to describe the isotherms and isotherm constants. Adsorption isothermal data could be well interpreted by the Langmuir model. The kinetic experimental data properly correlated with the second-order kinetic model, which indicates that the chemical sorption is the rate-limiting step. The Cu(II) ions can be removed from the chitosan and chitosan/PVA beads rapidly by treatment with an aqueous EDTA solution. Results also showed that chitosan and chitosan/PVA beads are favourable adsorbers.
  8. Wan Ngah WS, Hanafiah MA, Yong SS
    Colloids Surf B Biointerfaces, 2008 Aug 1;65(1):18-24.
    PMID: 18359205 DOI: 10.1016/j.colsurfb.2008.02.007
    The adsorption of humic acid on crosslinked chitosan-epichlorohydrin (chitosan-ECH) beads was investigated. Chitosan-ECH beads were characterized by Fourier transform infrared spectroscopy (FTIR), surface area and pore size analyses, and scanning electron microscopy (SEM). Batch adsorption experiments were carried out and optimum humic acid adsorption on chitosan-ECH beads occurred at pH 6.0, agitation rate of 300 rpm and contact time of 50 min. Adsorption equilibrium isotherms were analyzed by Langmuir and Freundlich models. Freundlich model was found to show the best fit for experimental data while the maximum adsorption capacity determined from Langmuir model was 44.84 mg g(-1). The adsorption of humic acid on chitosan-ECH beads was best described with pseudo-first-order kinetic model. For desorption study, more than 60% of humic acid could be desorbed from the adsorbent using 1.0M HCl for 180 min.
  9. Shah I, Adnan R, Wan Ngah WS, Mohamed N
    PLoS One, 2015;10(4):e0122603.
    PMID: 25849291 DOI: 10.1371/journal.pone.0122603
    In this study, iron impregnated activated carbon (FeAC) was synthesized following an oxidation and iron impregnation of activated carbon (AC). Both the AC and FeAC were characterized by pHZPC and FTIR spectroscopy. The removal of Methylene Blue (MB) by AC and FeAC was examined under various experimental conditions. The FeAC showed up to 95% (higher than AC) MB removal in the pH range of 7-10. Although the reaction kinetics was pseudo-second order, the overall rate was controlled by a number of processes such as film diffusion, pore diffusion and intraparticle diffusion. The activation energy values for the MB uptake by AC and FeAC (21.79 and 14.82 kJ/mol, respectively) revealed a physisorption process. In the regeneration study, FeAC has shown consistently ≥ 90% MB removal even up to 10 repeated cycles. The reusable characteristic of the spent FeAC improved the practical use of activated carbon and can be a breakthrough for continuous flow system applications where it can work effectively without any significant reduction in its performance.
  10. Shah I, Adnan R, Ngah WS, Mohamed N, Taufiq-Yap YH
    Bioresour Technol, 2014 May;160:52-6.
    PMID: 24630369 DOI: 10.1016/j.biortech.2014.02.047
    To enhance the potential of activated carbon (AC), iron incorporation into the AC surface was examined in the present investigations. Iron doped activated carbon (FeAC) material was synthesized and characterized by using surface area analysis, energy dispersive X-ray (EDX), temperature programmed reduction (TPR) and temperature programmed desorption (TPD). The surface area of FeAC (543 m(2)/g) was found to be lower than AC (1043 m(2)/g) as a result of the pores widening due to diffusion of iron particles into the porous AC. Iron uploading on AC surface was confirmed through EDX analysis, showing up to 13.75 wt.% iron on FeAC surface. TPR and TPD profiles revealed the presence of more active sites on FeAC surface. FeAC have shown up to 98% methylene blue (MB) removal from the aqueous media. Thermodynamic parameters indicated the spontaneous and exothermic nature of the sorption processes.
  11. Al-Amrani WA, Lim PE, Seng CE, Wan Ngah WS
    Bioresour Technol, 2013 Sep;143:584-91.
    PMID: 23835263 DOI: 10.1016/j.biortech.2013.06.055
    Bioregeneration of mono-amine modified silica gel (MAMS) adsorbent loaded with Acid Orange 7 (AO7), Acid Yellow 9 (AY9) and Acid Red 14 (AR14), respectively, was investigated under two different operational conditions, namely absence/presence of sucrose/bacto-peptone as the co-substrate and different biomass acclimation concentrations. The results revealed that the AY9- and AR14-loaded MAMS adsorbents could almost be completely bioregenerated but only in the presence of co-substrate whereas the bioregeneration of AO7-loaded MAMS could achieve up to 71% in the absence of the co-substrate. These differences could be related to the structural properties of the investigated azo dyes. In addition, the results showed that the bioregeneration duration of AO7-loaded MAMS could be progressively shortened by using biomass acclimated to increasingly higher AO7 concentration. However, the bioregeneration efficiencies were found to be relatively unchanged under different biomass acclimation concentrations.
  12. Hanafiah MA, Ngah WS, Zolkafly SH, Teong LC, Majid ZA
    J Environ Sci (China), 2012;24(2):261-8.
    PMID: 22655386
    The potential of base treated Shorea dasyphylla (BTSD) sawdust for Acid Blue 25 (AB 25) adsorption was investigated in a batch adsorption process. Various physiochemical parameters such as pH, stirring rate, dosage, concentration, contact time and temperature were studied. The adsorbent was characterized with Fourier transform infrared spectrophotometer, scanning electron microscope and Brunauer, Emmett and Teller analysis. The optimum conditions for AB 25 adsorption were pH 2, stirring rate 500 r/min, adsorbent dosage 0.10 g and contact time 60 min. The pseudo second-order model showed the best conformity to the kinetic data. The equilibrium adsorption of AB 25 was described by Freundlich and Langmuir, with the latter found to agree well with the isotherm model. The maximum monolayer adsorption capacity of BTSD was 24.39 mg/g at 300 K, estimated from the Langmuir model. Thermodynamic parameters such as Gibbs free energy, enthalpy and entropy were determined. It was found that AB 25 adsorption was spontaneous and exothermic.
  13. Al-Amrani WA, Lim PE, Seng CE, Ngah WS
    Bioresour Technol, 2012 Aug;118:633-7.
    PMID: 22704829 DOI: 10.1016/j.biortech.2012.05.090
    The objectives of this study were: (1) to investigate the role of mixed culture of biomass in the regeneration of mono-amine modified silica (MAMS) and granular activated carbon (GAC) loaded with Acid Orange 7 (AO7), (2) to quantify and compare the bioregeneration efficiencies of AO7-loaded MAMS and GAC using the sequential adsorption and biodegradation approach and (3) to evaluate the reusability of bioregenerated MAMS. The results show that considerably higher bioregeneration efficiency of AO7-loaded MAMS as compared to that of AO7-loaded GAC was achieved due to higher reversibility of adsorption of MAMS for AO7 and favorable pH factor resulting in more AO7 desorption. The progressive loss of adsorption capacity of MAMS for AO7 with multiple cycles of use suggests possible chemical and microbial fouling of the adsorption sites.
  14. Ibrahim MN, Ngah WS, Norliyana MS, Daud WR, Rafatullah M, Sulaiman O, et al.
    J Hazard Mater, 2010 Oct 15;182(1-3):377-85.
    PMID: 20619537 DOI: 10.1016/j.jhazmat.2010.06.044
    The present study explores the ability of modified soda lignin (MSL) extracted from oil palm empty fruit bunches (EFB) in removing lead (II) ions from aqueous solutions. The effect of contact time, point zero charge (pH(pzc)) and pH of the solution, initial metal ion concentration and adsorbent dosage on the removal process were investigated. Furthermore, the MSL is characterized by SEM, XRF, FT-IR and surface area analysis. Equilibrium adsorption isotherms and kinetics were investigated. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models of adsorption. The kinetic data obtained at different initial concentrations were analyzed using pseudo-first-order and pseudo-second-order models. The results provide strong evidence to support the hypothesis of adsorption mechanism.
  15. Al-Amrani WA, Lim PE, Seng CE, Ngah WS
    Water Res, 2012 Dec 1;46(19):6419-29.
    PMID: 23062787 DOI: 10.1016/j.watres.2012.09.014
    In this study, the operational factors affecting the bioregeneration of AO7-loaded MAMS particles in batch system, namely redox condition, initial acclimated biomass concentration, shaking speed and type of acclimated biomass were investigated. The results revealed that with the use of mixed culture acclimated to AO7 under anoxic/aerobic conditions, enhancement of the bioregeneration efficiency of AO7-loaded MAMS and the total removal efficiency of COD could be achieved when the bio-decolorization and bio-mineralization stages were fully aerated with dissolved oxygen above 7 mg/L. Shorter duration of bioregeneration was achieved by using relatively higher initial biomass concentration and lower shaking speed, respectively, whereas variations of biomass concentration and shaking speed did not have a pronounced effect on the bioregeneration efficiency. The duration and efficiency of bioregeneration process were greatly affected by the chemical structures of mono-azo dyes to which the biomasses were acclimated.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links