Displaying all 4 publications

Abstract:
Sort:
  1. Raguraj S, Kasim S, Jaafar NM, Nazli MH
    Environ Sci Pollut Res Int, 2023 Mar;30(13):37017-37028.
    PMID: 36564696 DOI: 10.1007/s11356-022-24758-z
    Modern agriculture prioritizes eco-friendly and sustainable strategies to enhance crop growth and productivity. The utilization of protein hydrolysate extracted from chicken feather waste as a plant biostimulant paves the path to waste recycling. A greenhouse experiment was performed to evaluate the implications of different doses (0, 1, 2, and 3 g L-1) of chicken feather protein hydrolysate (CFPH), application method (soil and foliar), and fertilizer rate (50% and 100%) on the growth performance of tea nursery plants. The highest dose of CFPH (3 g L-1) increased the shoot and root dry weights by 43% and 70%, respectively over control. However, no significant differences were observed between 2 and 3 g L-1 doses in plant dry weight, biometric, and root morphological parameters. Foliar application of CFPH significantly increased all the growth parameters compared to soil drenching except N, P, and K concentrations in leaves and roots. Plants grown under 100% fertilizer rate showed better growth performance than 50% fertilizer rate. Tea nursery plants treated with foliar 2 g L-1 dose and grown under full fertilizer rate recorded the highest plant dry weight, root length, and root surface area. However, tea plants under 50% fertilizer rate and treated with foliar 2 and 3 g L-1 doses sustained the growth similar to untreated plants under 100% fertilizer rate. The significantly higher N, P, and K concentrations in leaves were observed in plants treated with soil drenching of 2 and 3 g L-1 CFPH doses under 100% fertilizer rate. Our results indicate that the application of CFPH as a foliar spray is highly effective in producing vigorous tea nursery plants suitable for field planting, eventually capable of withstanding stress and higher yield.
  2. Nazli MH, Halim RA, Abdullah AM, Hussin G, Samsudin AA
    Asian-Australas J Anim Sci, 2019 Feb;32(2):224-232.
    PMID: 29879832 DOI: 10.5713/ajas.18.0175
    OBJECTIVE: Apart from various climatic differences, corn harvest stage and varieties are two major factors that can influence the yield and quality of corn silage in the tropics. A study was conducted to determine the optimum harvest stage of four corn varieties for silage production in Malaysia.

    METHODS: Corn was harvested at four growth stages; silking, milk, dough, and dent stages from four varieties; Sweet Corn hybrid 926, Suwan, breeding test line (BTL) 1 and BTL 2. Using a split plot design, the treatments were then analysed based on the plant growth performance, yield, nutritive and feeding values followed by a financial feasibility study for potential commercialization.

    RESULTS: Significant differences and interactions were detected across the parameters suggesting varying responses among the varieties towards the harvest stages. Sweet Corn was best harvested early in the dough stage due to high dry matter (DM) yield, digestible nutrient, and energy content with low fibre portion. Suwan was recommended to be harvested at the dent stage when it gave the highest DM yield with optimum digestible nutrient and energy content with low acid detergent fibre. BTL 1 and BTL 2 varieties can either be harvested at dough or dent stages as the crude protein, crude fibre, DM yield, DM content, digestible nutrient and energy were not significantly different at either stage. Further financial analysis showed that only Sweet Corn production was not financially feasible while Suwan had the best financial appraisal values among the grain varieties.

    CONCLUSION: In conclusion, only the grain varieties tested had the potential for silage making according to their optimum harvest stage but Suwan is highly recommended for commercialization as it was the most profitable.

  3. Nazli MH, Halim RA, Abdullah AM, Hussin G, Samsudin AA
    Trop Anim Health Prod, 2018 Jun;50(5):1119-1124.
    PMID: 29455428 DOI: 10.1007/s11250-018-1538-2
    The potential of using whole corn crop silage and rice straw as an alternative feed for the beef cattle based on the intake and growth performance were evaluated. Using randomised completely block design, nine adult Mafriwal cattle were blocked intro three groups and treated with three different forage diets supplemented with 20% pelleted palm kernel cake on dry matter basis. The treatments were 100% rice straw (RS), 100% corn silage (CS) and an equal mixture of rice straw and corn silage (MIX) fed ad libitum. The animals were housed in individual pens, and the feeding trial was conducted for 12 weeks with 2 weeks of adaptation period. The results showed that CS had the best feed nutritive composition with the lowest concentration of highly indigestible fibre and the highest concentration of organic matter and energy. The CS also had the highest intake, and the corn silage inclusion in MIX managed to improve the intake on par with CS in terms of the dry matter intake of body weight (DMI of BW), voluntary intake (VI) and crude protein (CP) intake. Cattle fed with CS gave the highest and most stable BW gain with an average daily gain (ADG) of 808 g/day rivalling cross-bred cattle fed with high amount of concentrates. The all straw diet (RS) supplemented with PKC recorded a positive ADG of 133 g/day while the MIX gave 383 g/day matching total Napier grass diet.
  4. Hisham MB, Hashim AM, Mohd Hanafi N, Abdul Rahman N, Abdul Mutalib NE, Tan CK, et al.
    Sci Rep, 2022 May 02;12(1):7107.
    PMID: 35501317 DOI: 10.1038/s41598-022-08819-4
    Silage produced in tropical countries is prone to spoilage because of high humidity and temperature. Therefore, determining indigenous bacteria as potential inoculants is important to improve silage quality. This study aimed to determine bacterial community and functional changes associated with ensiling using amplicon metagenomics and to predict potential bacterial additives associated with silage quality in the Malaysian climate. Silages of two forage crops (sweet corn and Napier) were prepared, and their fermentation properties and functional bacterial communities were analysed. After ensiling, both silages were predominated by lactic acid bacteria (LAB), and they exhibited good silage quality with significant increment in lactic acid, reductions in pH and water-soluble carbohydrates, low level of acetic acid and the absence of propionic and butyric acid. LAB consortia consisting of homolactic and heterolactic species were proposed to be the potential bacterial additives for sweet corn and Napier silage fermentation. Tax4fun functional prediction revealed metabolic pathways related to fermentation activities (bacterial division, carbohydrate transport and catabolism, and secondary metabolite production) were enriched in ensiled crops (p 
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links