Displaying all 9 publications

Abstract:
Sort:
  1. Ahmad J, Md Noor S, Mustapha SZ, Idris F
    Malays J Pathol, 2022 Dec;44(3):499-508.
    PMID: 36591717
    INTRODUCTION: Thrombocytopenia is a common complication in dengue that sometimes necessitates platelet transfusion. Immature platelet fraction (IPF) measures immature platelets that indirectly reflect thrombopoiesis and is helpful in predicting platelet recovery.

    OBJECTIVES: This study aimed to evaluate the role of IPF% and identify its cut-off value in predicting platelet recovery in dengue patients with thrombocytopenia.

    MATERIALS AND METHODS: Serial platelet count and IPF results were obtained from fifty-four confirmed dengue patients with platelet count <50x109 /L. Median peak IPF% and number of patients with platelet recovery were determined. Receiver operating characteristic (ROC) curve is generated to identify the IPF% cut-off value to predict platelet recovery.

    RESULTS: Median peak IPF% among dengue patients was 12.15% with 83.3% of them achieving platelet recovery after reaching the peak IPF%. There was a significant difference between median IPF% on day one of admission with peak IPF% among dengue patients. ROC curve analysis showed IFP% of 10.55% can be used to predict platelet recovery with a sensitivity of 69% and a specificity of 67%.

    CONCLUSION: IPF% is a reliable and useful parameter in predicting platelet recovery in dengue patients. This would assist the clinician in managing dengue patients especially those with severe thrombocytopenia without giving unnecessary platelet transfusion.

  2. Zakaria ZA, Mustapha S, Sulaiman MR, Mat Jais AM, Somchit MN, Abdullah FC
    Med Princ Pract, 2007;16(2):130-6.
    PMID: 17303949
    The present study was carried out to investigate the antinociceptive activity of the aqueous extract of Muntingia calabura (MCAE) leaves and to determine the effect of temperature and the involvement of the opioid receptor on the said activity using the abdominal constriction test (ACT) and hot-plate test (HPT) in mice.
  3. Chwan Chuong Chin JJ, Akbar MA, Mohd Yusof NY, Pike A, Goh CT, Mustapha S, et al.
    Chemosphere, 2024 Aug 20;364:143114.
    PMID: 39154772 DOI: 10.1016/j.chemosphere.2024.143114
    Yearly reports of detrimental effects resulting from harmful algal blooms (HAB) are still received in Malaysia and other countries, particularly concerning fish mortality and seafood contamination, both of which bear consequences for the fisheries industry. The underlying reason is the absence of a dependable early warning system. Hence, this research aims to develop a single DNA biosensor that can detect a group of HAB species known for producing saxitoxin (SXT), which is commonly found in Malaysian waters. The screen-printed carbon electrode (SPCE)-based DNA biosensor was fabricated by covalent grafting of the 3' aminated DNA probe of the sxtA4 conserved domain in SXT-producing dinoflagellates on the reverse-phase polymerized polyaniline/graphene (PGN) nanocomposite electrode via carbodiimide linkage. The introduction of a carboxyphenyl layer to the PGN nanotransducing element was essential to augment the carboxylic groups on the graphene (RGO), facilitating attachment with the aminated DNA. The synergistic effect of the asynthesized nanocomposite of PANI and RGO, tremendously enhanced the electron transfer rate of the ferri/ferrocyanide redox probe at the SPCE transducer surface, allowing for the label-free bioanalytical assay of complementary DNA targets. The developed DNA biosensor featuring the capacity to detect a broad range of Alexandrium minutum (A. minutum) cell concentrations, ranging from 10 to 10,000,000 cells L-1. The quantification of A. minutum cells from pure algal culture by the electrochemical DNA biosensor has been well-validated with traditional microscopic techniques. Furthermore, Alexandrium tamiyavanichii, another toxigenic HAB species, exhibited a similar electrochemical characteristic signal to those observed with A. minutum, whilst the biosensor yielded appreciably distinctive results when subjected to a non-toxigenic microalgae species as a negative control, i.e. Isochrysis galbana. A compendium DNA biosensor design and electrochemical detection strategy at laboratory scale serves as a precursor to the potential development of portable device for on-site detection, thus expanding the utility and scope of biosensor technology.
  4. Mohammed M, Muhammad S, Mohammed FZ, Mustapha S, Sha'aban A, Sani NY, et al.
    J Racial Ethn Health Disparities, 2021 10;8(5):1267-1272.
    PMID: 33051749 DOI: 10.1007/s40615-020-00888-3
    BACKGROUND: The novel coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in China and later spread rapidly to other parts of the world, including Africa. Africa was projected to be devastated by COVID-19. There is currently limited data regarding regional predictors of mortality among patients with COVID-19. This study aimed to evaluate the independent risk factors associated with mortality among patients with COVID-19 in Africa.

    METHODS: A total of 1028 confirmed cases of COVID-19 from Africa with definite survival outcomes were identified retrospectively from an open-access individual-level worldwide COVID-19 database. The live version of the dataset is available at https://github.com/beoutbreakprepared/nCoV2019 . Multivariable logistic regression was conducted to determine the risk factors that independently predict mortality among patients with COVID-19 in Africa.

    RESULTS: Of the 1028 cases included in study, 432 (42.0%) were females with a median (interquartile range, IQR) age of 50 (24) years. Older age (adjusted odds ratio {aOR} 1.06; [95% confidence intervals {95% CI}, 1.04-1.08]), presence of chronic disease (aOR 9.63; [95% CI, 3.84-24.15]), travel history (aOR 2.44; [95% CI, 1.26-4.72]), as well as locations of Central Africa (aOR 0.14; [95% CI, 0.03-0.72]) and West Africa (aOR 0.12; [95% CI, 0.04-0.32]) were identified as the independent risk factors significantly associated with increased mortality among the patients with COVID-19.

    CONCLUSIONS: The COVID-19 pandemic is evolving gradually in Africa. Among patients with COVID-19 in Africa, older age, presence of chronic disease, travel history, and the locations of Central Africa and West Africa were associated with increased mortality. A regional response should prioritize strategies that will protect these populations. Also, conducting a further in-depth study could provide more insights into additional factors predictive of mortality in COVID-19 patients.

  5. Mustapha S, Mohammed M, Azemi AK, Yunusa I, Shehu A, Mustapha L, et al.
    Oxid Med Cell Longev, 2021;2021:8830880.
    PMID: 33995826 DOI: 10.1155/2021/8830880
    The role of the endoplasmic reticulum (ER) has evolved from protein synthesis, processing, and other secretory pathways to forming a foundation for lipid biosynthesis and other metabolic functions. Maintaining ER homeostasis is essential for normal cellular function and survival. An imbalance in the ER implied stressful conditions such as metabolic distress, which activates a protective process called unfolded protein response (UPR). This response is activated through some canonical branches of ER stress, i.e., the protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6 (ATF6). Therefore, chronic hyperglycemia, hyperinsulinemia, increased proinflammatory cytokines, and free fatty acids (FFAs) found in diabesity (a pathophysiological link between obesity and diabetes) could lead to ER stress. However, limited data exist regarding ER stress and its association with diabesity, particularly the implicated proteins and molecular mechanisms. Thus, this review highlights the role of ER stress in relation to some proteins involved in diabesity pathogenesis and provides insight into possible pathways that could serve as novel targets for therapeutic intervention.
  6. Mustapha M, Lawal BK, Sha'aban A, Jatau AI, Wada AS, Bala AA, et al.
    PLoS One, 2021;16(11):e0260672.
    PMID: 34843594 DOI: 10.1371/journal.pone.0260672
    Students of the health sciences are the future frontliners to fight pandemics. The students' participation in COVID-19 response varies across countries and are mostly for educational purposes. Understanding the determinants of COVID-19 vaccine acceptability is necessary for a successful vaccination program. This study aimed to investigate the factors associated with COVID-19 vaccine acceptance among health sciences students in Northwest Nigeria. The study was an online self-administered cross-sectional study involving a survey among students of health sciences in some selected universities in Northwest Nigeria. The survey collected pertinent data from the students, including socio-demographic characteristics, risk perception for COVID-19, and willingness to accept the COVID-19 vaccine. Multiple logistic regression was used to determine the predictors of COVID-19 vaccine acceptance. A total of 440 responses with a median (interquartile range) age of 23 (4.0) years were included in the study. The prevalence of COVID-19 vaccine acceptance was 40.0%. Factors that independently predict acceptance of the vaccine were age of 25 years and above (adjusted odds ratio, aOR, 2.72; 95% confidence interval, CI, 1.44-5.16; p = 0.002), instructions from heads of institutions (aOR, 11.71; 95% CI, 5.91-23.20; p<0.001), trust in the government (aOR, 20.52; 95% CI, 8.18-51.51; p<0.001) and willingness to pay for the vaccine (aOR, 7.92; 95% CI, 2.63-23.85; p<0.001). The prevalence of COVID-19 vaccine acceptance among students of health sciences was low. Older age, mandate by heads of the institution, trust in the government and readiness to pay for the vaccine were associated with acceptance of the vaccine. Therefore, stakeholders should prioritize strategies that would maximize the vaccination uptake.
  7. Mustapha S, Magaji RA, Magaji MG, Gaya IB, Umar B, Yusha'u Y, et al.
    Iran J Basic Med Sci, 2024;27(9):1077-1084.
    PMID: 39055875 DOI: 10.22038/IJBMS.2024.76605.16573
    Interest in naturally occurring phytochemicals has been on the increase, they are believed to reduce the risk of brain disorders. Hispidulin (HN) is a phenolic flavonoid compound with various pharmacological and biological effects on the central nervous system. It belongs to the flavone class of flavonoids. It can be found in different plant materials, especially fruits and vegetables. The literature used in this review was collected from credible scientific databases including ScienceDirect, Scopus, PubMed, Google Scholar, and Hindawi without time restriction, using relevant keywords, such as HN, brain, central nervous system, flavonoids, and flavones. HN was discovered to possess pro-apoptotic properties, act as an antioxidant, inhibit cytokine production and toll-like receptor 4 expression, as well as impede nuclear factor kappa beta and mitogen-activated protein kinase B. HN was also found to inhibit lipid peroxidation in vitro and reduce brain edema in mice. These pharmacological potentials suggest that HN is a promising candidate for neuroprotection in CNS disorders like depression and epilepsy. This review provides an update on the scientific literature concerning how these activities could help provide various forms of neuroprotection in the CNS. Additional experimental data on the effects of HN in models of neurological disorders and neuroprotection should be explored further. Based on the current study, HN is a promising candidate for neuroprotection of the CNS.
  8. Ahmad MH, Zezi AU, Anafi SB, Alshargi OY, Mohammed M, Mustapha S, et al.
    Toxicol Res, 2022 Oct;38(4):487-502.
    PMID: 36277361 DOI: 10.1007/s43188-022-00133-5
    The plant Combretum hypopilinum Diels (Combretaceae) has been utilized in Nigeria and other African nations to treat many diseases including liver, inflammatory, gastrointestinal, respiratory, infectious diseases, epilepsy and many more. Pharmacological investigations have shown that the plant possesses anti-infective, antidiarrhoeal, hepatoprotective, anti-inflammatory, anticancer, sedative, antioxidant, and antiepileptic potentials. However, information on its toxicity profile is unavailable despite the plant's therapeutic potential. As such, this work aimed to determine the acute and sub-acute oral toxic effects of the hydromethanolic leaves extract of C. hypopilinum. The preliminary phytochemical evaluation was carried out based on standard procedures. The acute toxicity evaluation was conducted by oral administration of the extract at the dose of 5000 mg/kg based on the guideline of the Organization of Economic Co-operation and Development (OECD) 423. To investigate the sub-acute toxicity effects, the extract was administered orally to the animals daily for 28-consecutive days at the doses of 250, 500, and 1000 mg/kg. Mortality, body weight and relative organ weight were observed. The hepatic, renal, haematological, and lipid profile parameters were investigated. The liver, kidney, heart, lung, small intestine, and stomach were checked for any histopathological alterations. The results of the phytochemical investigation showed cardiac glycosides, tannins, steroids, flavonoids, alkaloids, saponins, and triterpenes. Based on the acute toxicity investigation outcome, no death and signs of toxic effects were observed. The result showed that the oral median lethal dose (LD50) of the extract was more than the 5000 mg/kg. The extract remarkably reduced the weekly body weight of the animals at 500 mg/kg in the first and second weeks. It also significantly decreased the relative kidney weight, alkaline phosphatase, glucose, potassium, and low-density lipoprotein. There was a remarkable elevation in the percentage of eosinophils, basophils, monocytes, and granulocyte. There were histopathological abnormalities on the kidney, lung, stomach, and small intestine. The extract is relatively safe on acute exposure but moderately toxic at higher doses on sub-acute administration, particularly to the kidney.
  9. Mustapha S, Mohammed M, Azemi AK, Jatau AI, Shehu A, Mustapha L, et al.
    Molecules, 2021 Jul 19;26(14).
    PMID: 34299638 DOI: 10.3390/molecules26144362
    The endoplasmic reticulum (ER) plays a multifunctional role in lipid biosynthesis, calcium storage, protein folding, and processing. Thus, maintaining ER homeostasis is essential for cellular functions. Several pathophysiological conditions and pharmacological agents are known to disrupt ER homeostasis, thereby, causing ER stress. The cells react to ER stress by initiating an adaptive signaling process called the unfolded protein response (UPR). However, the ER initiates death signaling pathways when ER stress persists. ER stress is linked to several diseases, such as cancer, obesity, and diabetes. Thus, its regulation can provide possible therapeutic targets for these. Current evidence suggests that chronic hyperglycemia and hyperlipidemia linked to type II diabetes disrupt ER homeostasis, thereby, resulting in irreversible UPR activation and cell death. Despite progress in understanding the pathophysiology of the UPR and ER stress, to date, the mechanisms of ER stress in relation to type II diabetes remain unclear. This review provides up-to-date information regarding the UPR, ER stress mechanisms, insulin dysfunction, oxidative stress, and the therapeutic potential of targeting specific ER stress pathways.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links