Displaying all 2 publications

Abstract:
Sort:
  1. Adebayo IA, Usman AI, Shittu FB, Ismail NZ, Arsad H, Muftaudeen TK, et al.
    Bioinorg Chem Appl, 2020;2020:8898360.
    PMID: 33029114 DOI: 10.1155/2020/8898360
    BACKGROUND: Acute myeloid leukemia (AML) persists to be a major health problem especially among children as effective chemotherapy to combat the disease is yet to be available. Boswellia dalzielii is a well-known herb that is traditionally used for treatment and management of many diseases including degenerative diseases. In this study, silver nanoparticles were synthesized from the phytochemicals of B. dalzielii stem bark aqueous extract. The silver nanoparticles were characterized by carrying out Fourier Transform Infrared (FTIR) spectroscopy, Energy Filtered Scanning Electron Microscopy (FESEM), X-ray diffraction, and Dynamic Light Scattering (DLS) analyses. Antioxidant capacity of the nanoparticles was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, and the antiproliferative effect of the nanoparticles on Kasumi-1 leukemia cells was investigated using PrestoBlue assay. Flow cytometry analysis was performed to observe the effect of the nanoparticles on the leukemia cell cycle progression.

    RESULTS: Our findings revealed that the synthesized silver nanoparticles were formed from electrons of the plant phytochemicals which include aromatic compounds, ethers, and alkynes. FESEM analysis revealed that the sizes of the nanoparticles range from 12 nm to 101 nm; however, DLS analysis estimated a larger average size of the nanoparticles (108.3 nm) because it measured the hydrodynamic radii of the nanoparticles. The zeta potential of the nanoparticles was -16 nm, and the XRD pattern of the nanoparticles has distinct peaks at 38.02°, 42.94°, 64.45°, 77.20°, and 81.47°, which is typical of face-centered cubic (fcc) structure of silver. The Trolox Equivalence Antioxidant Capacity (TEAC) of the nanoparticles was estimated to be 300.91 μM Trolox/mg silver nanoparticles. The nanoparticles inhibited Kasumi-1 cell proliferation. The half minimal inhibitory concentrations (IC50s) that inhibited Kasumi-1 cell proliferation are 49.5 μg/ml and 13.25 μg/ml at 48 and 72 hours, respectively. The nanoparticles induced cell cycle arrest in the Kasumi-1 cells at S (5% increase) and G2/M (3% increase) phases.

    CONCLUSION: The nanoparticles synthesized from the stem bark extract of B. dalzielii inhibit the growth of Kasumi-1 leukemia cells by activating cell cycle arrest; thus, they are potential antileukemic agents.

  2. Oladosu Y, Rafii MY, Arolu F, Chukwu SC, Salisu MA, Olaniyan BA, et al.
    Plants (Basel), 2021 Aug 20;10(8).
    PMID: 34451758 DOI: 10.3390/plants10081714
    Eggplant is the fifth economically most important vegetable in the Solanaceae family after tomato, potato, chili, and tobacco. Apart from the well-cultivated brinjal or aubergine eggplant (Solanum melongena L.), two other underutilized eggplant species, the African eggplant (S. macrocarpon L.) and the scarlet eggplant (S. aethiopicum L.), were also cultivated with local importance where the leaves and fruits are used for food and medicinal purposes. The major objectives of the eggplant breeding program are to improve fruit quality, increase yield performance through heterosis breeding, and introduce pest and disease resistances from wild relatives. Europe and Asia hold a wide collection of germplasm resources with significant potential for genetic improvement. While cultivated eggplant is susceptible to several fungi and bacteria, many wild relatives offer potential resistance to these pathogens. In this paper, we review the genetic resources and diversity of cultivated eggplant and its wild relatives. As a point of departure, we examine the economic importance, domestication, taxonomy characterization, and relationships of the crop and its wild relatives. The importance of evaluating and safeguarding wild relatives is highlighted, as crop wild relatives are highly underrepresented. A key section in this study is an overview dedicated to genetic resources, resistance to biotic and abiotic stresses, pre-breeding, and breeding for sustainable eggplant production.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links