Displaying all 10 publications

Abstract:
Sort:
  1. Rasti B, Jinap S, Mozafari MR, Yazid AM
    Food Chem, 2012 Dec 15;135(4):2761-70.
    PMID: 22980870 DOI: 10.1016/j.foodchem.2012.07.016
    The relative oxidative stability of freshly prepared and stored liposomal and nanoliposomal systems of docosahexaenoic acid (DHA, 22:6 n-3) and eicosapentaenoic acid (EPA, 20:5 n-3) were investigated. The effects of organic solvents on the oxidative stability of liposomal polyunsaturated fatty acids (PUFAs) produced by two methods, the Bangham thin-film hydration (conventional rotary evaporation method and using organic solvents) and Mozafari (direct hydration and without using organic solvents) methods, were compared. The highest physicochemical stability was observed in PUFA liposomes prepared by the Mozafari method, followed by conventional liposomes and bulk PUFAs. There was no significant change in physicochemical stability during 10 months of cold storage (4°C) in the dark. Moreover, the comparison between liposomes (>200 nm) and nanoliposomes (50-200 nm) revealed that the surface charge, physical stability and oxidative stability of liposomal PUFAs increased as the size of the liposomes decreased. The differences in the oxidative stability of PUFAs may be due to the protective effects of aqueous systems, which indicate the advantage of using non-organic solvent (water and CO(2)) techniques in liposome manufacturing.
  2. Aazami S, Mozafari M, Shamsuddin K, Akmal S
    Ind Health, 2016;54(1):50-7.
    PMID: 26423332 DOI: 10.2486/indhealth.2015-0086
    This study aimed at assessing effect of the four dimensions of work-family conflicts (strain and time-based work interference into family and family interference into work) on sleep disturbance in Malaysian working women. This cross-sectional study was conducted among 325 Malaysian married working women. Multiple-stage simple random sampling method was used to recruit women from public service departments of Malaysia. Self-administrated questionnaires were used to measure the study variables and data were analyzed using SPSS version 21. We found that high level of the four dimensions of work-family conflicts significantly increase sleep disturbance. Our analyses also revealed an age-dependent effect of the work-family conflict on sleep disturbance. Women in their 20 to 30 yr old suffer from sleep disturbance due to high level of time-based and strain-based work-interference into family. However, the quality of sleep among women aged 30-39 were affected by strain-based family-interference into work. Finally, women older than 40 yr had significantly disturbed sleep due to strain-based work-interference into family as well as time-based family interference into work. Our findings showed that sleep quality of working women might be disturbed by experiencing high level of work-family conflict. However, the effects of inter-role conflicts on sleep varied among different age groups.
  3. Touri M, Moztarzadeh F, Osman NAA, Dehghan MM, Mozafari M
    Mater Sci Eng C Mater Biol Appl, 2018 Mar 01;84:236-242.
    PMID: 29519434 DOI: 10.1016/j.msec.2017.11.037
    Tissue engineering scaffolds with oxygen generating elements have shown to be able to increase the level of oxygen and cell survivability in specific conditions. In this study, biphasic calcium phosphate (BCP) scaffolds with the composition of 60% hydroxyapatite (HA) and 40% beta-tricalcium phosphate (β-TCP), which have shown a great potential for bone tissue engineering applications, were fabricated by a direct-write assembly (robocasting) technique. Then, the three-dimensional (3D)-printed scaffolds were coated with different ratios of an oxygen releasing agent, calcium peroxide (CPO), which encapsulated within a polycaprolactone (PCL) matrix through dip-coating, and used for in situ production of oxygen in the implanted sites. The structure, composition and morphology of the prepared scaffolds were characterized by different techniques. The oxygen release kinetics and biological investigations of the scaffolds were also studied in vitro. The results showed that oxygen release behaviour was sustained and dependant on the concentration of CPO encapsulated in the PCL coating matrix. It was also demonstrated that the coated scaffolds, having 3% CPO in the coating system, could provide a great potential for promoting bone ingrowth with improving osteoblast cells viability and proliferation under hypoxic conditions. The findings indicated that the prepared scaffolds could play a significant role in engineering of large bone tissue implants with limitations in oxygen diffusion.
  4. Heidarpour F, Mohammadabadi MR, Zaidul IS, Maherani B, Saari N, Hamid AA, et al.
    Pharmazie, 2011 May;66(5):319-24.
    PMID: 21699064
    The oral route is considered the most patient-convenient means of drug administration. In recent years there has been a tendency to employ smart carrier systems that enable controlled or timed release of a bioactive material, thereby providing a better dosing pattern and minimizing side effects. Nano-encapsulation systems (nanocarriers) offer important advantages over conventional drug delivery techniques. Nanocarriers can protect the drug from chemical/enzymatic degradation and enhance bioavailability. Prebiotics are ideal ingredients for the nano-encapsulation and oral drug delivery due to their natural ability to protect the encapsulated compound in the upper gasterointestinal (GI) tract. Here the potential of prebiotics for oral delivery of drugs and other bioactives is reviewed.
  5. Touri M, Moztarzadeh F, Abu Osman NA, Dehghan MM, Brouki Milan P, Farzad-Mohajeri S, et al.
    ACS Biomater Sci Eng, 2020 05 11;6(5):2985-2994.
    PMID: 33463293 DOI: 10.1021/acsbiomaterials.9b01789
    Hypoxia, the result of disrupted vasculature, can be categorized in the main limiting factors for fracture healing. A lack of oxygen can cause cell apoptosis, tissue necrosis, and late tissue healing. Remedying hypoxia by supplying additional oxygen will majorly accelerate bone healing. In this study, biphasic calcium phosphate (BCP) scaffolds were fabricated by robocasting, an additive manufacturing technique. Then, calcium peroxide (CPO) particles, as an oxygen-releasing agent, were coated on the BCP scaffolds. Segmental radial defects with the size of 15 mm were created in rabbits. Uncoated and CPO-coated BCP scaffolds were implanted in the defects. The empty (control) group received no implantation. Repairing of the bone was investigated via X-ray, histological analysis, and biomechanical tests at 3 and 6 months postoperatively, with immunohistochemical examinations at 6 months after operation. According to the radiological observations, formation of new bone was augmented at the interface between the implant and host bone and internal pores of CPO-coated BCP scaffolds compared to uncoated scaffolds. Histomorphometry analysis represented that the amount of newly formed bone in the CPO-coated scaffold was nearly two times higher than the uncoated one. Immunofluorescence staining revealed that osteogenic markers, osteonectin and octeocalcin, were overexpressed in the defects treated with the coated scaffolds at 6 months of postsurgery, demonstrating higher osteogenic differentiation and bone mineralization compared to the uncoated scaffold group. Furthermore, the coated scaffolds had superior biomechanical properties as in the case of 3 months after surgery, the maximal flexural force of the coated scaffolds reached to 134 N, while it was 92 N for uncoated scaffolds. The results could assure a boosted ability of bone repair for CPO-coated BCP scaffolds implanted in the segmental defect of rabbit radius because of oxygen-releasing coating, and this system of oxygen-generating coating/scaffold might be a potential for accelerated repairing of bone defects.
  6. Azami G, Lam SK, Shariff-Ghazali S, Said SM, Aazami S, Mozafari M, et al.
    Arch Iran Med, 2018 08 01;21(8):356-361.
    PMID: 30113857
    BACKGROUND: The theory if self-efficacy is the central concept of social cognitive theory with emphasis on the constructs of efficacy expectation, outcome expectation. Efficacy expectation is defined as the person's confidence to carry out a specific behavior. Outcome expectation is beliefs that carrying out a specific behavior will lead to a specific outcome. While the benefit of measuring outcome expectations has been established, there has been no large scale within the Iranian context. The purpose of this study is to examine the reliability-validity of the Persian version of the Perceived Therapeutic Efficacy Scale (PTES).

    METHODS: This study was conducted among 160 patients with type 2 diabetes mellitus (T2DM) using a self-administered instrument measuring outcome expectation. We used a methodological study design to assess the validity and reliability of the translated Persian version of the instrument.

    RESULTS: The findings of the present study support the uni-dimensionality of the Persian version of the instrument. The 10 items of the scale account for 73.54% of the total variance and the un-rotated factor loadings ranged from 0.66 to 0.93. Moreover, this study offers support for convergent validity and internal consistency of the scale.

    CONCLUSION: Our study demonstrated good convergent validity, factor structure and internal consistency in a sample of 160 Iranian adults with T2DM. Therefore, the Persian version of the scale is a valid and reliable instrument and can be used in research and clinical settings.

  7. Danaei M, Kalantari M, Raji M, Samareh Fekri H, Saber R, Asnani GP, et al.
    Heliyon, 2018 Dec;4(12):e01088.
    PMID: 30603716 DOI: 10.1016/j.heliyon.2018.e01088
    There has been a steady increase in the interest towards employing nanoliposomes as colloidal drug delivery systems, particularly in the last few years. Their biocompatibility nature along with the possibility of encapsulation of lipid-soluble, water-soluble and amphipathic molecules and compounds are among the advantages of employing these lipidic nanocarriers. A challenge in the successful formulation of nanoliposomal systems is to control the critical physicochemical properties, which impact their in vivo performance, and validating analytical techniques that can adequately characterize these nanostructures. Of particular interest are the chemical composition of nanoliposomes, their phase transition temperature, state of the encapsulated material, encapsulation efficiency, particle size distribution, morphology, internal structure, lamellarity, surface charge, and drug release pattern. These attributes are highly important in revealing the supramolecular arrangement of nanoliposomes and incorporated drugs and ensuring the stability of the formulation as well as consistent drug delivery to target tissues. In this article, we present characterization of nanoliposomal formulations as an example to illustrate identification of key in vitro characteristics of a typical nanotherapeutic agent. Corresponding analytical techniques are discussed within the context of nanoliposome assessment, single particle analysis and ensuring uniform manufacture of therapeutic formulations with batch-to-batch consistency.
  8. Azami G, Soh KL, Sazlina SG, Salmiah MS, Aazami S, Mozafari M, et al.
    J Diabetes Res, 2018;2018:4930157.
    PMID: 30225268 DOI: 10.1155/2018/4930157
    In recent years, great emphasis has been placed on the role of nonpharmacological self-management in the care of patients with diabetes. Studies have reported that nurses, compared to other healthcare professionals, are more likely to promote preventive healthcare seeking behaviors. The aim of this study was to investigate the effectiveness of a nurse-led diabetes self-management education on glycosylated hemoglobin. A two-arm parallel-group randomized controlled trial with the blinded outcome assessors was designed. One hundred forty-two adults with type 2 diabetes were randomized to receive either usual diabetes care (control group) or usual care plus a nurse-led diabetes self-management education (intervention group). Duration of the intervention was 12 weeks. The primary outcome was glycosylated hemoglobin (HbA1c values). Secondary outcomes were changes in blood pressure, body weight, lipid profiles, self-efficacy (efficacy expectation and outcome expectation), self-management behaviors, quality of life, social support, and depression. Outcome measures were assessed at baseline and at 12-week and 24-week postrandomizations. Patients in the intervention group showed significant improvement in HbA1c, blood pressure, body weight, efficacy expectation, outcome expectation, and diabetes self-management behaviors. The beneficial effect of a nurse-led intervention continued to accrue beyond the end of the trial resulting in sustained improvements in clinical, lifestyle, and psychosocial outcomes. This trial is registered with IRCT2016062528627N1.
  9. Zarrabi A, Alipoor Amro Abadi M, Khorasani S, Mohammadabadi MR, Jamshidi A, Torkaman S, et al.
    Molecules, 2020 Feb 01;25(3).
    PMID: 32024189 DOI: 10.3390/molecules25030638
    Nanoscale lipid bilayers, or nanoliposomes, are generally spherical vesicles formed by the dispersion of phospholipid molecules in a water-based medium by energy input. The other nanoscale object discussed in this entry, i.e., tocosome, is a recently introduced bioactive carrier made mainly from tocopheryl phosphates. Due to their bi-compartmental structure, which consists of lipidic and aqueous compartments, these nanocarriers are capable of carrying hydrophilic and hydrophobic material separately or simultaneously. Nanoliposomes and tocosomes are able to provide protection and release of sensitive food-grade bioactive materials in a sustained manner. They are being utilized for the encapsulation of different types of bioactive materials (such as drugs, vaccines, antimicrobials, antioxidants, minerals and preservatives), for the enrichment and fortification of different food and nutraceutical formulations and manufacturing of functional products. However, a number of issues unique to the nutraceutical and food industry must first be resolved before these applications can completely become a reality. Considering the potentials and promises of these colloidal carrier systems, the present article reviews various aspects of nanoliposomes, in comparison with tocosomes, including the ingredients used in their manufacture, formation mechanisms and issues pertaining to their application in the formulation of health promoting dietary supplements and functional food products.
  10. Faghihi H, Mozafari MR, Bumrungpert A, Parsaei H, Taheri SV, Mardani P, et al.
    Photodiagnosis Photodyn Ther, 2023 Jun;42:103614.
    PMID: 37201772 DOI: 10.1016/j.pdpdt.2023.103614
    The future of molecular-level therapy, efficient medical diagnosis, and drug delivery relies on the effective theragnostic function which can be achieved by the synergistic effect of fluorescent carbon dots (FCDs) liposomes (L) and nanoliposomes. FCDs act as the excipient navigation agent while liposomes play the role of the problem-solving agent, thus the term "theragnostic" would describe the effect of LFCDs properly. Liposomes and FCDs share some excellent at-tributes such as being nontoxic and biodegradable and they can represent a potent delivery system for pharmaceutical compounds. They enhance the therapeutic efficacy of drugs via stabilizing the encapsulated material by circumventing barriers to cellular and tissue uptake. These agents facilitate long-term drug biodistribution to the intended locations of action while eliminating systemic side effects. This manuscript reviews recent progress with liposomes, nanoliposomes (collectively known as lipid vesicles) and fluorescent carbon dots, by exploring their key characteristics, applications, characterization, performance, and challenges. An extensive and intensive understanding of the synergistic interaction between liposomes and FCDs sets out a new research pathway to an efficient and theragnostic / theranostic drug delivery and targeting diseases such as cancer.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links