Imatinib inhibits Bcr-Abl, c-KIT and PDGFR kinases. It is approved for the treatment of chronic myeloid leukemia (CML), gastrointestinal stromal tumors (GIST) and has further therapeutic potential. Male ICR mice were given imatinib PO (50 or 25 mg/kg, 5 doses every 2 h); euthanized 2 h after the last dose administration; plasma, liver, brain, spleen and kidney were collected and imatinib concentration measured by an optimized HPLC method for quantification in tissues. Methanol (1:1 v/v plasma) and pH 4, 40:30:30 (v/v/v) water-methanol-acetonitrile at 5 ml/g (brain) and 10 ml/g (spleen, kidney, liver) ratio was added to the samples, homogenized, sonicated, centrifuged (15,000 rpm, 5 min, 2 degrees C) and the supernatant injected into an Inertsil CN-3 column (4.6 mm x 150 mm, 5 microm) using 64:35:1 (v/v/v) water-methanol-triethylamine (pH 4.8), flow rate 1 ml/min, 25 degrees C. Imatinib eluted at 7.5 min (268 nm). Linearity: 0.1-50 microg/ml; precision, accuracy, inter- and intra-day variability was within 15%. Recovery was above 95% (plasma), 80% (brain) and 90% (kidney, liver, spleen). Imatinib tissue concentrations were 6-8 folds higher than plasma except brain, where the ratio decreased from 0.24 to 0.08 suggesting limited brain penetration, likely due to blood brain barrier efflux transporters. The extensive distribution supports the expansion of therapeutic applications.
Imatinib is an efficacious anticancer drug with a spectrum of potential antitumour applications limited by poor biodistribution at therapeutic concentrations to the tissues of interest. We assess the pharmacokinetic and tissue distribution profile of imatinib in a liposome formulation. Its single dose (6.25 mg x kg(-1)) in a liposome formulation was administered iv to male mice. Imatinib concentration was measured in plasma, spleen, liver, kidney and brain using a HPLC assay. Non-compartmental pharmacokinetic approach was used to assess the disposition parameters. The plasma disposition profile was biphasic with a plateau-like second phase. The AUC(0-->infinity) was 11.24 microg x h x mL(-1), the elimination rate constant (k(el)) was 0.348 h(-1) and the elimination half life (t(1/2)) was 2.0 h. The mean residence time (MRT) was 2.59 h, V(SS) was 1.44 L x kg(-1) and clearance was 0.56 L x h x kg(-1). Liver achieved the highest tissue exposure: CMAX = 18.72 microg x mL(-1); AUC(0-->infinity)= 58.18 microg x h x mL(-1) and longest t(1/2) (4.29 h) and MRT (5.31 h). Kidney and spleen AUC(0-->infinity) were 47.98 microg x h x mL(-1) and 23.46 microg x h x mL(-1), respectively. Half-life was 1.83 h for the kidney and 3.37 h for the spleen. Imatinib penetrated into the brain reaching approximately 1 microg x g(-1). Upon correction by organ blood flow the spleen showed the largest uptake efficiency. Liposomal imatinib presented extensive biodistribution. The drug uptake kinetics showed mechanism differences amongst the tissues. These findings encourage the development of novel imatinib formulations to treat other cancers.