Displaying publications 1 - 20 of 71 in total

Abstract:
Sort:
  1. Shahinuzzaman M, Yaakob Z, Moniruzzaman M
    J Cosmet Dermatol, 2016 Jun;15(2):185-93.
    PMID: 26777540 DOI: 10.1111/jocd.12209
    Soap is the most useful things which we use our everyday life in various cleansing and cosmetics purposes. Jatropha oil is nonedible oil which has more benefits to soap making. It has also cosmetics and medicinal properties. But the presence of toxic Phorbol esters in Jatropha oil is the main constrains to use it. So it is necessary to search a more suitable method for detoxifying the Jatropha oil before the use as the main ingredient of soap production. This review implies a more suitable method for removing phorbol esters from Jatropha oil. Several parameters such as the % yield of pure Jatropha oil soap, TFM value of soap, total alkali content, free caustic alkalinity content, pH, the antimicrobial activity, and CMC value of general soap should be taken into consideration for soap from detoxified Jatropha oil.
  2. Moniruzzaman M, Goto M
    PMID: 29744542 DOI: 10.1007/10_2018_64
    Ionic liquids (ILs), a potentially attractive "green," recyclable alternative to environmentally harmful volatile organic compounds, have been increasingly exploited as solvents and/or cosolvents and/or reagents in a wide range of applications, including pretreatment of lignocellulosic biomass for further processing. The enzymatic delignification of biomass to degrade lignin, a complex aromatic polymer, has received much attention as an environmentally friendly process for clean separation of biopolymers including cellulose and lignin. For this purpose, enzymes are generally isolated from naturally occurring fungi or genetically engineered fungi and used in an aqueous medium. However, enzymatic delignification has been found to be very slow in these conditions, sometimes taking several months for completion. In this chapter, we highlight an environmentally friendly and efficient approach for enzymatic delignification of lignocellulosic biomass using room temperature ionic liquids (ILs) as (co)solvents or/and pretreatment agents. The method comprises pretreatment of lignocellulosic biomass in IL-aqueous systems before enzymatic delignification, with the aim of overcoming the low delignification efficiency associated with low enzyme accessibility to the solid substrate and low substrate and product solubilities in aqueous systems. We believe the processes described here can play an important role in the conversion of lignocellulosic biomass-the most abundant renewable biomaterial in the world-to biomaterials, biopolymers, biofuels, bioplastics, and hydrocarbons. Graphical Abstract.
  3. Mahmood H, Moniruzzaman M
    Biotechnol J, 2019 Dec;14(12):e1900072.
    PMID: 31677240 DOI: 10.1002/biot.201900072
    The evolution of petroleum-derived polymers is one of the crowning accomplishments of the past century. Although the significant economic gains from this industrial model of resource utilization are achieved, the environmental impacts are fatal. One of the principles of sustainable development is to replace such polymers with potential alternatives derived from renewable materials. Biopolymers derived from natural resources afford a new, versatile, environmentally benign feedstock that could exhibit closed-loop life cycles as part of a future material's industrial ecology. However, the solubility and processability of biopolymer materials provoke a serious bottleneck owing to their dense networks of inter - and intramolecular bondings and structural heterogeneity. Recently, ionic liquids (ILs) have emerged as promising green solvents and acquired augmented appreciation for their peerless power of biopolymer processing. Among the fourteen principle of green chemistry, the two key elements encourage the exploitation of renewable raw materials by using environmentally benign solvents that cover in dissolution of biopolymers using ILs. This mini review represents a brief overview of the comprehensive ILs assisted extraction and processing of various biopolymeric materials for value-added applications.
  4. Sivapragasam M, Moniruzzaman M, Goto M
    Biotechnol J, 2016 Jun 17.
    PMID: 27312484 DOI: 10.1002/biot.201500603
    The technological utility of biomolecules (e.g. proteins, enzymes and DNA) can be significantly enhanced by combining them with ionic liquids (ILs) - potentially attractive "green" and "designer" solvents - rather than using in conventional organic solvents or water. In recent years, ILs have been used as solvents, cosolvents, and reagents for biocatalysis, biotransformation, protein preservation and stabilization, DNA solubilization and stabilization, and other biomolecule-based applications. Using ILs can dramatically enhance the structural and chemical stability of proteins, DNA, and enzymes. This article reviews the recent technological developments of ILs in protein-, enzyme-, and DNA-based applications. We discuss the different routes to increase biomolecule stability and activity in ILs, and the design of biomolecule-friendly ILs that can dissolve biomolecules with minimum alteration to their structure. This information will be helpful to design IL-based processes in biotechnology and the biological sciences that can serve as novel and selective processes for enzymatic reactions, protein and DNA stability, and other biomolecule-based applications.
  5. Sivapragasam M, Moniruzzaman M, Goto M
    Biotechnol J, 2020 Apr;15(4):e1900073.
    PMID: 31864234 DOI: 10.1002/biot.201900073
    Ionic liquids (ILs), a class of materials with unique physicochemical properties, have been used extensively in the fields of chemical engineering, biotechnology, material sciences, pharmaceutics, and many others. Because ILs are very polar by nature, they can migrate into the environment with the possibility of inclusion in the food chain and bioaccumulation in living organisms. However, the chemical natures of ILs are not quintessentially biocompatible. Therefore, the practical uses of ILs must be preceded by suitable toxicological assessments. Among different methods, the use of microorganisms to evaluate IL toxicity provides many advantages including short generation time, rapid growth, and environmental and industrial relevance. This article reviews the recent research progress on the toxicological properties of ILs toward microorganisms and highlights the computational prediction of various toxicity models.
  6. Lieu T, Yusup S, Moniruzzaman M
    Bioresour Technol, 2016 Jul;211:248-56.
    PMID: 27019128 DOI: 10.1016/j.biortech.2016.03.105
    Recently, a great attention has been paid to advanced microwave technology that can be used to markedly enhance the biodiesel production process. Ceiba pentandra Seed Oil containing high free fatty acids (FFA) was utilized as a non-edible feedstock for biodiesel production. Microwave-assisted esterification pretreatment was conducted to reduce the FFA content for promoting a high-quality product in the next step. At optimum condition, the conversion was achieved 94.43% using 2wt% of sulfuric acid as catalyst where as 20.83% conversion was attained without catalyst. The kinetics of this esterification reaction was also studied to determine the influence of factors on the rate of reaction and reaction mechanisms. The results indicated that microwave-assisted esterification was of endothermic second-order reaction with the activation energy of 53.717kJ/mol.
  7. Moniruzzaman M, Rodríguez I, Rodríguez-Cabo T, Cela R, Sulaiman SA, Gan SH
    J Chromatogr A, 2014 Nov 14;1368:26-36.
    PMID: 25441341 DOI: 10.1016/j.chroma.2014.09.057
    The suitability of the dispersive liquid-liquid microextraction (DLLME) technique for gas chromatography (GC) characterization of minor organic compounds in honey samples is evaluated. Under optimized conditions, samples were pre-treated by liquid-liquid extraction with acetonitrile followed by DLLME using carbon tetrachloride (CCl4, 0.075 mL) as extractant. The yielded settled phase was analyzed by GC using high resolution time-of-flight (TOF) mass spectrometry (MS). The whole sample preparation process is completed in approximately 10 min, with a total consumption of organic solvents below 4 mL, relative standard deviations lower than 12% and with more than 70 organic compounds, displaying linear retention index in the range from 990 to 2900, identified in the obtained extracts. In comparison with HS SPME extraction, higher peak intensities were attained for most volatile and semi-volatile compounds amenable to both extraction techniques. Furthermore, other species such as highly polar and water soluble benzene acids, long chain fatty acids, esters and flavonoids, which are difficult to concentrate by HS SPME, could be identified in DLLME extracts. Some of the compounds identified in DLLME extracts have been proposed as useful for samples classification and/or they are recognized as markers of honeys from certain geographic areas.
  8. Moniruzzaman M, Rodríguez I, Ramil M, Cela R, Sulaiman SA, Gan SH
    Talanta, 2014 Nov;129:505-15.
    PMID: 25127626 DOI: 10.1016/j.talanta.2014.06.019
    The performance of gas chromatography (GC) combined with a hybrid quadrupole time-of-flight (QTOF) mass spectrometry (MS) system for the determination of volatile and semi-volatile compounds in honey samples is evaluated. After headspace (HS) solid-phase microextraction (SPME) of samples, the accurate mass capabilities of the above system were evaluated for compounds identification. Accurate scan electron impact (EI) MS spectra allowed discriminating compounds displaying the same nominal masses, but having different empirical formulae. Moreover, the use of a mass window with a width of 0.005 Da provided highly specific chromatograms for selected ions, avoiding the contribution of interferences to their peak areas. Additional information derived from positive chemical ionization (PCI) MS spectra and ion product scan MS/MS spectra permitted confirming the identity of novel compounds. The above possibilities are illustrated with examples of honey aroma compounds, belonging to different chemical classes and containing different elements in their molecules. Examples of compounds whose structures could not be described are also provided. Overall, 84 compounds, from a total of 89 species, could be identified in 19 honey samples from 3 different geographic areas in the world. The suitability of responses measured for selected ions, corresponding to above species, for authentication purposes is assessed through principal components analysis.
  9. Moniruzzaman M, Sulaiman SA, Azlan SA, Gan SH
    Molecules, 2013;18(12):14694-710.
    PMID: 24287998 DOI: 10.3390/molecules181214694
    Honey is a good source of several important chemical compounds and antioxidants and is harvested throughout the year. However, no study has determined how their contents change over the years. The aim of the present research was to investigate the changes in the phenolics, flavonoids and antioxidant properties, as well as other physicochemical properties, of Malaysian acacia honey collected during different months during a two year period. The DPPH (1,1-diphenyl-2-picrylhydrazyl) and FRAP (ferric reducing antioxidant power) methods were used to determine the total antioxidant activity of the honey samples. Generally, honey samples collected in the beginning and the middle of the year tended to have higher sugar content, which may be attributed to its high acidic nature and low moisture content. There was a gradual increase in the phenolic content of the acacia honey samples collected between September 2010 and December 2010. The honey sample collected at the beginning of the year (January) showed the highest color intensity and was dark amber in color. It also contained the highest concentration of phenolic compounds (341.67 ± 2.94 mg(gallic acid)/kg), the highest flavonoid content (113.06 ± 6.18 mg(catechin)/kg) and the highest percentage of DPPH inhibition and the highest FRAP value, confirming its high antioxidant potential. There was a positive correlation between DPPH and total phenolic content, suggesting that phenolic compounds are the strongest contributing factor to the radical scavenging activity of Malaysian acacia honeys. Overall, our results indicated that there were significant seasonal variations in the antioxidant potentials of honey over the two year period and the time of honey collection affects its physicochemical properties. Therefore, acacia honey from Malaysia should ideally be collected during the dry season, particularly in the months of January, May and June.
  10. Moniruzzaman M, Sulaiman SA, Khalil MI, Gan SH
    Chem Cent J, 2013;7:138.
    PMID: 23938192 DOI: 10.1186/1752-153X-7-138
    The aim of the present study was to evaluate the physical, biochemical and antioxidant properties of four Malaysian monofloral types of honey (gelam, longan, rubber tree and sourwood honeys) compared to manuka honey. Several physical parameters of honey, such as pH, moisture content, electrical conductivity (EC), total dissolved solids (TDS), color intensity, total sugar and sucrose content, were measured. A number of biochemical and antioxidant tests were performed to determine the antioxidant properties of the honey samples. Hydroxymethylfurfural (HMF) levels were determined using high performance liquid chromatography.
  11. Khalil MI, Alam N, Moniruzzaman M, Sulaiman SA, Gan SH
    J Food Sci, 2011 Aug;76(6):C921-8.
    PMID: 22417491 DOI: 10.1111/j.1750-3841.2011.02282.x
    The phenolic acid and flavonoid contents of Malaysian Tualang, Gelam, and Borneo tropical honeys were compared to those of Manuka honey. Ferric reducing/antioxidant power assay (FRAP) and the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical-scavenging activities were also quantified. All honey extracts exhibited high phenolic contents (15.21 ± 0.51- 42.23 ± 0.64 mg/kg), flavonoid contents (11.52 ± 0.27- 25.31 ± 0.37 mg/kg), FRAP values (892.15 ± 4.97- 363.38 ± 10.57 μM Fe[II]/kg), and high IC₅₀ of DPPH radical-scavenging activities (5.24 ± 0.40- 17.51 ± 0.51 mg/mL). Total of 6 phenolic acids (gallic, syringic, benzoic, trans-cinnamic, p-coumaric, and caffeic acids) and 5 flavonoids (catechin, kaempferol, naringenin, luteolin, and apigenin) were identified. Among the Malaysian honey samples, Tualang honey had the highest contents of phenolics, and flavonoids, and DPPH radical-scavenging activities. We conclude that among Malaysian honey samples, Tualang honey is the richest in phenolic acids, and flavonoid compounds, which have strong free radical-scavenging activities.
  12. Moniruzzaman M, Khalil MI, Sulaiman SA, Gan SH
    PMID: 23983317
    Free radicals and reactive oxygen species (ROS) have been implicated in contributing to the processes of aging and disease. In an effort to combat free radical activity, scientists are studying the effects of increasing individuals' antioxidant levels through diet and dietary supplements. Honey appears to act as an antioxidant in more ways than one. In the body, honey can mop up free radicals and contribute to better health. Various antioxidant activity methods have been used to measure and compare the antioxidant activity of honey. In recent years, DPPH (Diphenyl-1-picrylhydrazyl), FRAP (Ferric Reducing Antioxidant Power), ORAC (The Oxygen Radical Absorbance Capacity), ABTS [2, 2-azinobis (3ehtylbenzothiazoline-6-sulfonic acid) diamonium salt], TEAC [6-hydroxy-2, 5, 7, 8-tetramethylchroman-2-carboxylic acid (Trolox)-equivalent antioxidant capacity] assays have been used to evaluate antioxidant activity of honey. The antioxidant activity of honey is also measured by ascorbic acid content and different enzyme assays like Catalase (CAT), Glutathione Peroxidase (GPO), Superoxide Dismutase (SOD). Among the different methods available, methods that have been validated, standardized and widely reported are recommended.
  13. Moniruzzaman M, Khalil MI, Sulaiman SA, Gan SH
    PMID: 23433009 DOI: 10.1186/1472-6882-13-43
    The aim of the present study was to evaluate the physicochemical and antioxidant properties of Malaysian monofloral honey samples-acacia, pineapple and borneo honey-and compare them with tualang honey. Acacia and pineapple honey are produced by Apis mellifera bees while borneo and tualang honey are produced by Apis cerana and Apis dorsata bees, respectively.
  14. Ali MK, Moshikur RM, Wakabayashi R, Moniruzzaman M, Goto M
    ACS Appl Mater Interfaces, 2021 May 05;13(17):19745-19755.
    PMID: 33891816 DOI: 10.1021/acsami.1c03111
    Chemotherapeutic cytotoxic agents such as paclitaxel (PTX) are considered essential for the treatment of various cancers. However, PTX injection is associated with severe systemic side effects and high rates of patient noncompliance. Micelle formulations (MFs) are nano-drug delivery systems that offer a solution to these problems. Herein, we report an advantageous carrier for the transdermal delivery of PTX comprising a new MF that consists of two biocompatible surfactants: cholinium oleate ([Cho][Ole]), which is a surface-active ionic liquid (SAIL), and sorbitan monolaurate (Span-20). A solubility assessment confirmed that PTX was readily solubilized in the SAIL-based micelles via multipoint hydrogen bonding and cation-π and π-π interactions between PTX and SAIL[Cho][Ole]. Dynamic light scattering (DLS) and transmission electron microscopy revealed that in the presence of PTX, the MF formed spherical PTX-loaded micelles that were well-distributed in the range 8.7-25.3 nm. According to DLS, the sizes and size distributions of the micelle droplets did not change significantly over the entire storage period, attesting to their physical stability. In vitro transdermal assessments using a Franz diffusion cell revealed that the MF absorbed PTX 4 times more effectively than a Tween 80-based formulation and 6 times more effectively than an ethanol-based formulation. In vitro and in vivo skin irritation tests revealed that the new carrier had a negligible toxicity profile compared with a conventional ionic liquid-based carrier. Based on these findings, we believe that the SAIL[Cho][Ole]-based MF has potential as a biocompatible nanocarrier for the effective transdermal delivery of poorly soluble chemotherapeutics such as PTX.
  15. Moshikur RM, Ali MK, Wakabayashi R, Moniruzzaman M, Goto M
    Mol Pharm, 2021 08 02;18(8):3108-3115.
    PMID: 34250805 DOI: 10.1021/acs.molpharmaceut.1c00324
    Coronavirus disease 2019 (COVID-19) has spread across the world, and no specific antiviral drugs have yet been approved to combat this disease. Favipiravir (FAV) is an antiviral drug that is currently in clinical trials for use against COVID-19. However, the delivery of FAV is challenging because of its limited solubility, and its formulation is difficult with common organic solvents and water. To address these issues, four FAV ionic liquids (FAV-ILs) were synthesized as potent antiviral prodrugs and were fully characterized by nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FT-IR) spectrometry, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), and differential scanning calorimetry (DSC). The aqueous solubility and in vivo pharmacokinetic properties of the FAV-ILs were also evaluated. The FAV-ILs exhibited improved aqueous solubility by 78 to 125 orders of magnitude when compared with that of free FAV. Upon oral dosing in mice, the absolute bioavailability of the β-alanine ethyl ester FAV formulation was increased 1.9-fold compared with that of the control FAV formulation. The peak blood concentration, elimination half-life, and mean absorption time of FAV were also increased by 1.5-, 2.0-, and 1.5-fold, respectively, compared with the control. Furthermore, the FAV in the FAV-ILs exhibited significantly different biodistribution compared with the control FAV formulation. Interestingly, drug accumulation in the lungs and liver was improved 1.5-fold and 1.3-fold, respectively, compared with the control FAV formulation. These results indicate that the use of ILs exhibits potential as a simple, scalable strategy to improve the solubility and oral absorption of hydrophobic drugs, such as FAV.
  16. Mahmood H, Shakeel A, Abdullah A, Khan MI, Moniruzzaman M
    Polymers (Basel), 2021 Jul 29;13(15).
    PMID: 34372105 DOI: 10.3390/polym13152504
    The thermal kinetic modeling is crucial for development of sustainable processes where lignocellulosic fuels are a part of chemical system and their thermal degradation eventuates. In this paper, thermal decomposition of three lignocellulosic materials (bagasse, rice husk, and wheat straw) was obtained by the thermogravimetric (TG) technique and kinetics was analyzed by both model-fitting and isoconversional (model-free) methods to compare their effectiveness. Two models selected from each class include Arrhenius and Coats-Redfern (model-fitting), and Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) (model-free). The formal model-fitting approach simulating the thermal decomposition of solids by assuming a fixed mechanism was found to be unduly facile. However, activation energy (E) values calculated from two model-fitting techniques were considerably different from each other with a percentage difference in the range of 1.36% to 7.65%. Particularly, both model-fitting methods predicted different reaction mechanism for thermal disintegration of lignocellulosic materials (two-dimensional diffusion (D2) by Arrhenius and one-dimensional diffusion (D1) by Coat-Redfern method). Conversely, the model-free routine offers a transformation of mechanism and activation energy values throughout reaction and is, therefore, more authentic to illustrate the complexity of thermal disintegration of lignocellulosic particles. Based on the model-free kinetic analysis, the lignocellulosic materials may be devised in following order of activation energy: rice husk > bagasse > wheat straw, by both KAS and FWO methods with a percentage difference no more than 0.84% for fractional conversion up to 0.7. Isoconversional approach could be recommended as more realistic and precise for modeling non-isothermal kinetics of lignocellulosic residues compared to model-fitting approach.
  17. Chowdhury MR, Moshikur RM, Wakabayashi R, Moniruzzaman M, Goto M
    Int J Pharm, 2021 May 15;601:120582.
    PMID: 33872711 DOI: 10.1016/j.ijpharm.2021.120582
    Human skin contains numerous antigen-presenting cells that are a potential target for several immune-based therapies, including vaccination and cancer immunotherapy. However, the outermost layer of the skin-the stratum corneum-acts as a major physical barrier against the permeation of antigens that have a molecular weight > 500 Da. In this study, an ionic liquid-assisted delivery system (ILDS) was developed, which enabled the successful transdermal delivery of an antigenic protein, ovalbumin (OVA), with a toll-like receptor agonist, imiquimod, as an adjuvant, to stimulate a specific immune response. Both the ionic liquids and ILDS were completely biocompatible for topical or transdermal application for therapeutic purposes. The skin permeation of the antigenic protein and adjuvant was found to be significantly enhanced because of the incorporation of a surface-active ionic liquid in the ILDS. An in vivo immunization study showed that there was a high level of OVA-specific IgG antibody production because of the enhanced permeation of the antigen and adjuvant across and into the skin. In a preclusive anticancer study, vaccination through ILDS showed stronger tumor-growth inhibition compared to control group. These results indicated that the ILDS could be a promising strategy for transdermal immunization as future therapeutics.
  18. Yenugu VMR, Ambavaram VBR, Moniruzzaman M, Madhavi G
    J Sep Sci, 2018 Nov;41(21):3966-3973.
    PMID: 30138541 DOI: 10.1002/jssc.201800626
    In the present study, a sensitive and fully validated liquid chromatography with mass spectrometry method was developed for the quantification of three potential genotoxic impurities in rabeprazole drug substance. The separation was achieved on Symmetry C18 column (100 × 4.6 mm, 3.5 μm) using 0.1% formic acid in water as mobile phase A and acetonitrile as mobile phase B in gradient elution mode at 0.5 mL/min flow rate. Triple quadrupole mass detection with electrospray ionization was operated in selected ion recording mode for the quantification of impurities. The calibration curves were demonstrated good linearity over the concentration range of 1.0-4.5 ppm for O-phenylenediamine, 1.8-4.5 ppm for 4-nitrolutidine-N-oxide and 1.0-4.5 ppm for benzyltriethylammonium chloride with respect to 10 mg/mL of rabeprazole. The correlation coefficient obtained in each case was >0.998. The recoveries were found satisfactory over the range between 94.22 and 106.84% for all selected impurities. The method validation was carried out following International Conference on Harmonization guidelines, from which the developed method was able to quantitate the impurities at 1.0 ppm for O-phenylenediamine, 1.8 ppm for 4-nitrolutidine-N-oxide and 1.0 ppm for benzyltriethylammonium chloride. Furthermore, the proposed method was successfully evaluated for the determination of selected impurities from bulk drug and formulation samples of rabeprazole within the acceptable limits.
  19. Butt FI, Muhammad N, Hamid A, Moniruzzaman M, Sharif F
    Int J Biol Macromol, 2018 Dec;120(Pt A):1294-1305.
    PMID: 30189278 DOI: 10.1016/j.ijbiomac.2018.09.002
    PHAs (polyhydroxyalkanoates) have emerged as biodegradable plastics more strongly in the 20th century. A wide range of bacterial species along with fungi, plants, oilseed crops and carbon sources have been used extensively to synthesize PHA on large scales. Alteration of PHA monomers in their structures and composition has led to the development of biodegradable and biocompatible polymers with highly specific mechanical properties. This leads to the incorporation of PHA in numerous biomedical applications within the previous decade. PHAs have been fabricated in various forms to perform tissue engineering to repair liver, bone, cartilage, heart tissues, cardiovascular tissues, bone marrow, and to act as drug delivery system and nerve conduits. A large number of animal trials have been carried out to assess the biomedical properties of PHA monomers, which also confirms the high compatibility of PHA family for this field. This review summarizes the synthesis of PHA from different sources, and biosynthetic pathways and biomedical applications of biosynthesized polyhydroxyalkanoates.
  20. Moshikur RM, Ali MK, Wakabayashi R, Moniruzzaman M, Goto M
    Int J Pharm, 2021 Oct 25;608:121129.
    PMID: 34562557 DOI: 10.1016/j.ijpharm.2021.121129
    Oral delivery of the sparingly soluble drug methotrexate (MTX) is challenging owing to its poor bioavailability and low solubility. To address this challenge, the present study reports the conversion of MTX into a series of five ionic liquids (ILs) comprising a cationic component-i.e., cholinium (Cho), tetramethylammonium (TMA), tetrabutylphosphonium (TBP), or an amino acid ester-and an anionic component-i.e., MTX. The biocompatibility, pharmacokinetics, tissue distribution, and antitumor efficacy of each MTX-based IL were investigated to determine its usefulness as a pharmaceutical. Oral administration to mice revealed that proline ethyl ester MTX (IL[ProEt][MTX]) had 4.6-fold higher oral bioavailability than MTX sodium, followed by aspartic diethyl ester MTX, IL[TBP][MTX], IL[Cho][MTX], and IL[TMA][MTX]. The peak plasma concentration, elimination half-life, area under the plasma concentration, mean absorption time, and body clearance of IL[ProEt][MTX] were significantly (p 
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links