The present study was carried out to assess the genotoxicity potential of Ficus deltoidea var. kunstleri aqueous extract (FDAE) using standard in vitro assays. The DNA damage of V79B cells was measured using the alkaline comet assay treated at 0.1 mg/mL (IC10) and 0.3 mg/mL (IC25) of FDAE together with positive and negative controls. For in vitro micronucleus assay, the V79B cells were treated with FDAE at five different concentrations (5, 2.5, 1.25, 0.625, and 0.3125 mg/mL) with and without S9 mixture. The bacteria reverse mutation assay of FDAE was performed on Salmonella typhimurium strains TA98, 100, 1535, 1537, and Escherichia coli strain WP2uvrA using pre-incubation method in the presence or in the absence of an extrinsic metabolic system (S9 mixture). FDAE at 0.1 and 0.3 mg/mL significantly increased DNA damage in both comet tail and tail moment (p < 0.05). No significant changes were detected in the number of micronucleated cell when compared to control. Tested at the doses up to 5000 µg/plate, the FDAE did not increase the number of revertant colonies for all strains. In conclusion, further investigation needs to be conducted in animal model to confirm the non-genotoxicity activities of FDAE.
Cancer is a major cause of morbidity and mortality worldwide and therefore there has been interest in discovering the phytoconstituents of medicinal plants exhibiting anticancer activities. Morinda citrifolia L., commonly known as Noni, has shown anticancer properties in in vitro, in vivo, and in clinical studies. A systematic review was conducted to collate scientific evidence on the anticancer properties of M. citrifolia using pre-determined keywords on 5 electronic databases: MEDLINE, CENTRAL, LILACS, Web of Science, and EBSCOHost. A total of 51 clinical and preclinical studies comprising 41 efficacy and 10 safety studies were included in this review. Our findings showed that M. citrifolia demonstrated various anticancer properties in different cancer models, via multiple mechanisms including antitumor, antiproliferative, pro-apoptotic, antiangiogenesis, antimigratory, anti-inflammatory, and immunomodulatory activities. M. citrifolia is deemed to be a potentially valuable medicinal plant in the treatment of cancer through its many intrinsic pathways. More well-designed and reported preclinical efficacy and safety studies are needed to allow for better translation into future clinical studies which could further substantiate the role of M. citriflolia in cancer treatment.
Metabolic surgery is an essential option in the treatment of obese patients with type 2 diabetes (T2D). Despite its known advantages, this surgery still needs to be introduced in Malaysia. In this prospective study, the pathophysiological mechanisms at the molecular level will be studied and the metabolomics pathways of diabetes remission will be explored. The present study aims to evaluate the changes in the anthropometric measurements, body composition, phase angle, diet intake, biochemistry parameters, adipokines, microRNA, and metabolomics, both pre- and post-surgery, among obese diabetic patients in Malaysia. This is a multicenter prospective cohort study that will involve obese patients (n = 102) with a body mass index (BMI) of ≥25 kg/m2 (Asian BMI categories: WHO/IASO/IOTF, 2000) who will undergo metabolic surgery. They will be categorized into three groups: non-diabetes, prediabetes, and diabetes. Their body composition will be measured using a bioimpedance analyzer (BIA). The phase angle (PhA) data will be analyzed. Venous blood will be collected from each patient for glycated hemoglobin (HbA1c), lipids, liver, renal profile, hormones, adipokines, and molecular and metabolomics analyses. The serum microRNA will be measured. A gene expression study of the adipose tissue of different groups will be conducted to compare the groups. The relationship between the 1HNMR-metabolic fingerprint and the patients' lifestyles and dietary practices will be determined. The factors responsible for the excellent remission of T2D will be explored in this study.