Bacterial cellulose (BC) has gained attention among researchers in materials science and bio-medicine due to its fascinating properties. However, BC's fibre collapse phenomenon (i.e., its inability to reabsorb water after dehydration) is one of the drawbacks that limit its potential. To overcome this, a catalyst-free thermal crosslinking reaction was employed to modify BC using citric acid (CA) without compromising its biocompatibility. FTIR, XRD, SEM/EDX, TGA, and tensile analysis were carried out to evaluate the properties of the modified BC (MBC). The results confirm the fibre crosslinking phenomenon and the improvement of some properties that could be advantageous for various applications. The modified nanofibre displayed an improved crystallinity and thermal stability with increased water absorption/swelling and tensile modulus. The MBC reported here can be used for wound dressings and tissue scaffolding.
Polyhydroxyalkanoate (PHA) is a type of polyesters produced in the form of accumulated intracellular granules by many microorganisms. It is viewed as an environmentally friendly bioproduct due to its biodegradability and biocompatibility. The production of the PHA using oil substrates such as waste oil and plant oil, has gained considerable attention due to the high product yield and lower substrate cost. Nevertheless, the PHA fermentation using oil substrate is complicated due to the heterogenous fatty acid composition, varied bio-accessibility and possible inhibitory effect on the bacterial culture. This review presents the current state-of-the-art of PHA production from oil-based substrates. This paper firstly discusses the technical details, such as the choice of bacteria strain and fermentation conditions, characteristic of the oil substrate as well as the PHA composition and application. Finally, the paper discusses the challenges and prospects for up-scaling towards a cleaner and effective bioprocess. From the literature review, depending on the cell culture and the type of PHA produced, the oil platform can have a PHA yield of 0.2-0.8 g PHA/g oil substrate, with PHA content mostly from 40 to 90% of the cell dry weight. There is an on-going search for more effective oil-utilising PHA producers and lower cost substrate for effective PHA production. The final application of the PHA polymer influences the treatment needed during downstream processing and its economic performance. PHA with different compositions exhibits varied decomposition behaviour under different conditions, requiring further insight towards its management towards a sustainable circular economy.
It is a challenging task to develop active biomacromolecular wound dressing materials that are biocompatible and possesses antibacterial properties against the bacterial strains that cause severe skin disease. This work is focused on the preparation of a biocompatible and degradable hydrogel for wound dressing application using arabinoxylan (ARX) and guar gum (GG) natural polymers. Fourier transform infrared spectroscopy (FT-IR) confirmed that both ARX and GG interacted well with each other, and their interactions further increased with the addition of crosslinker tetraethyl orthosilicate. Scanning electron microscope (SEM) micrographs showed uniform porous morphologies of the hydrogels. The porous morphologies and uniform interconnected pores are attributed to the increased crosslinking of the hydrogel. Elastic modulus, tensile strength, and fracture strain of the hydrogels significantly improved (from ATG-1 to ATG-4) with crosslinking. Degradability tests showed that hydrogels lost maximum weight in 7 days. All the samples showed variation in swelling with pH. Maximum swelling was observed at pH 7. The hydrogel samples showed good antibacterial activity against Pseudomonas aeruginosa (Gram-negative) and Staphylococcus aureus (Gram-positive) in PBS, good drug release profile (92% drug release), and nontoxic cellular behavior. The cells not only retained their cylindrical morphologies onto the hydrogel but were also performing their normal activities. It is, therefore, believed that as-developed hydrogel could be a potential material for wound dressing application.