This study aimed to integrate polyether sulfone (PES) membrane with hydroxyapatite synthesized from fish scale biowaste (HAp) to form ion exchange membrane. The PES incorporated by self-assembled with different concentrations of HAp solution; 0.2, 0.4, 0.6, 0.8 and 1.0 wt%. The prepared ion exchange membranes were characterized regarding permeability coefficient, porosity, morphology, ion exchange capacity (IEC), AT-IR, and fouling analysis. The promising characteristics and outstanding performance demonstrated by PES membrane incorporated with 0.8 wt%. Via SEM images and ATIR spectra, the PES/HAp-0.8 membrane depicted the adequate number, well distributed and low agglomeration of HAp onto the membrane surface with a strong attachment. The membrane also demonstrated good ion exchange capacity around 49%. Permeability coefficient for PES/HAp-0.8 membrane was 101.5 L/m2.h with 87.69 % membrane porosity.
This paper reports an alternative method for making glass-ceramic from disposal waste water
sludge and soda lime silica (SLS) glass. The glass ceramic samples were prepared from a mixture
of wastewater sludge and SLS glasses, melted at 1375°C for 3 hours and quenched by pouring into
water to obtain a coarse frit. The frit glass was then crushed and sieved to 106μm before it was
pressed to a pellet. The sintering process was performed at various temperatures between 700-
1000°C for 2 hours and morphologically characterized with XRD, SEM, and EDX. Overall results
showed the crystalline phase of diopside sodian-critobalite glass-ceramic is depending on thermal
treatment process and making them attractive to industrial uses such as in construction, tiling, and
glass-ceramic applications.