Displaying all 8 publications

Abstract:
Sort:
  1. Mohd Reusmaazran Yusof, Yusof Abdullah
    MyJurnal
    Nuclear grade (high-purity) graphite for fuel element and moderator material in Advanced Gas
    Cooling Reactors (AGR) displays large scatter in strength and a non-linear stress-strain response from the damage accumulation. These responses can be characterized as quasi-brittle behaviour. Current assessments of fracture in core graphite components are based on the linear elastic approximation and thus represent a major assumption. The quasi-brittle behaviour gives challenge to assess the real nuclear graphite component. The selected test method would help to bridge the gap between microscale to macro-scale in real reactor component. The small scale tests presented here can contribute some statistical data to manifests the failure in real component. The evaluation and choice of different solution design of biaxial test will be discussed in this paper. The ball on-three ball test method was used for assessment test follows by numerous of analytical method. The results shown that biaxial strength of the EY9 grade graphite depends on the method used for evaluation. Some of the analytical methods use to calculate biaxial strength were found not to be valid and therefore should not be used to assess the mechanical properties of nuclear graphite.
  2. Mohd. Reusmaazran Yusof, Roslinda Shamsudin, Syafiq Baharuddin, Idris Besar
    Sains Malaysiana, 2008;37:233-237.
    Porous hydroxyapatite (HAp) as a bone graft substitute was produced via gas technique with three different concentrations of hydrogen peroxide (H2O2) namely 20, 30 and 50%. Hydroxyapatite(HA) slurries with different concentration were produced by mixing between H2O2 solutions and HA powder (L/P) with different ratio i.e. 0.9 to 2.20 ml.g-1. Different L/P ratio and H2O2 concentration affected the porosity, interconnectivity and compressive strength of HAp sample. Changes in L/P ratio between 0.9 to 2.20 ml.g-1, increases the porosity around 50 - 65% at 20% H2O2 concentration. Porosity increases with the L/P values and H2O2 concentration which 76% of porosity was obtained at 50% H2O2 and 2.20 mlg-1 of L/P. The compressive strength of HAp is in the range of 0.5 to 2.15 MPa and is found decreasing with the increasing of L/P values.
  3. Syed Nuzul Fadzli Syed Adam, Roslinda Shamsudin, Firuz Zainuddin, Mohd Reusmaazran Yusof
    Sains Malaysiana, 2018;47:1293-1302.
    Kajian ini bertujuan untuk mengkaji kesan kandungan fosfat berbeza (X = 10, 15 dan 20% mol) terhadap pembentukan
    morfologi permukaan, ikatan kimia, penghabluran, fasa dan kekuatan mampatan kaca sol-gel tersinter. Serbuk kaca
    gel dengan komposisi 50SiO2
    .(50-X).CaO.XP2
    O5 (dalam peratusan mol) disediakan melalui kaedah sol-gel, dimampat
    membentuk pelet dan disinter pada suhu 1200°C selama 3 jam. Didapati bahawa dengan peningkatan kandungan fosfat,
    mikrostruktur kaca tersinter yang lebih padat terhasil disebabkan peningkatan pemadatan jasad, pengurangan keliangan
    ketara dan pembentukan butiran dan sempadan butiran berhablur yang lebih besar. Peningkatan sebanyak 20% mol
    kandungan fosfat meningkatkan vitrifikasi (fasa kekaca) pada permukaan kaca tersinter yang mana meningkatkan
    pemadatan jasad kepada 83.56%, kekuatan mampatan pada 113 MPa dan penurunan peratusan penghabluran pada
    sekitar 66%. Analisis EDS menunjukkan peningkatan kandungan fosfat menyebabkan peningkatan unsur Si-O pada fasa
    amorfus dan unsur P-O pada fasa berhablur. Analisis FTIR menunjukkan berlaku pemisahan fasa kaya fosfat dan fasa
    kaya silikat dan pada masa sama meningkatkan rangkaian tetrahedra silikat (Si-O-Si) dan fosfat (P-O-P) kaca tersinter.
    Peningkatan kandungan fosfat meningkatkan kumpulan berfungsi berkaitan fosfat hablur dan mengurangkan kumpulan
    berfungsi berkaitan silikat hablur. Ini menyebabkan peningkatan pembentukan fasa silikokarnotit, Ca5 (PO4)2 (SiO4)
    dalam matriks kaca tersinter dengan peningkatan kandungan fosfat yang ditunjukkan melalui analisis XRD.
  4. Yusof Abdullah, Mohd Reusmaazran Yusof, Azali Muhamad, Zaifol Samsu, Nurhaslinda Ee Abdullah
    MyJurnal
    Boron carbide (B4C) is a ceramic material which is effective to absorb thermal neutron due to wide neutron absorption cross section. In this work, B4C is added into concrete as fine aggregates to test the attenuation properties by getting the attenuation coefficient of the concrete/B4C. The samples of concrete/B4C were exposing to the thermal neutron radiation source (241-Americium-Berylium) at the dos rate of 29.08 mR/h. The result show that the attenuation coefficient of the sample with 20wt% B4C is 0.299cm -1 and the sample without B4C is 0.238cm -1 and hence, concrete/B4C is suitable as a shield for thermal neutron radiation.
  5. Yusof Abdullah, Mohd Reusmaazran Yusof, Nadira Kamarudin, Paulus, Wilfred Sylvester, Rusnah Mustaffa, Nurazila Mat Zali, et al.
    MyJurnal
    Al/B4C composites with 0 wt.%, 5 wt.% and 10 wt.% of B4C were prepared by powder metallurgy and their properties were characterised successfully. Investigation of the effect of milling times (4, 8, 12, 16 hours) on microstructure, phase identification, hardness and neutron attenuation coefficient of composites has been studied. The results showed that hardness increased with increased of milling time, with maximum hardness obtained at 16 hours milling time. The increment is slower as the composition of B4C increased. The hardness of Al/10%B4C, Al/5%B4C and Al/0%B4C were 81.7, 78.7 and 61.2 HRB respectively. Morphology of scanning electron microscopy (SEM) showed that microstructures play important role in controlling the hardness. Meanwhile, x-ray diffraction (XRD) analysis showed the phases and crystalline present in composites with an indication that crystalline of the grain increased as the milling time increased. Neutron absorption of Al/10%B4C composites showed that this composite has the highest attenuation coefficient, thus indicating that it is the best composites for neutron shielding.
  6. Mohd Reusmaazran Yusof, Yusof Abdullah, Rusnah Mustaffa, Abdul Aziz Mohamed, Nurhaslinda Ee Abdullah, Fatin Nabilah Tajul Ariffin
    MyJurnal
    Cement and concrete has been widely used as shielding material in reactor nuclear in order to minimize exposure to individuals. In this paper we present boron based concrete as neutron shielding for nuclear reactor applications. Concrete specimens with dimension of 10x10x10 cm were used and irradiated with neutron radiation of 252-californium. Characterization of physical, mechanical and radiation attenuation properties of concrete were carried out. The results show that the shielding performance is better than ordinary concrete. From the result, we confirmed that the performance of the concrete/boron carbide is suitable for practical use.
  7. Yusof Abdullah, Mohd Reusmaazran Yusof, Azali Muhammad, Nadira Kamarudin, Paulus, Wilfred Sylvester, Nurazila Mat Zali, et al.
    MyJurnal
    The preparation, physical and mechanical properties of Al/B4C composites with 5 and 10 wt.% reinforcement content were investigated. In order to obtain the feedstock with a low powder loading, B4C mixtures containing fine powders were investigated to obtain the optimal particle packing. The experimental results indicated that the fine containing 5 and 10 wt.% particles are able to prepare the feedstock with a good flowability. The composites fabricated by powder metallurgy have low densities and homogeneous microstructures. Additionally there is no interface reaction observed between the reinforcement and matrix by XRD analysis. The hardness of Al/B4C composites prepared by powder metallurgy was high.
  8. Yusof Abdullah, Mohd Reusmaazran Yusof, Megat Harun Al Rashid Megat Ahmad, Hafizal Yazid, Abdul Aziz Mohamed, Norazila Mat Sali, et al.
    MyJurnal
    Effects of 3 MeV electron (10 mA) irradiation at room temperature on the phase, microstructure,
    electrical and life time properties of 4H-SiC wafer were investigated by scanning electron
    microscopy (SEM), X-ray diffraction (XRD), four point probe current-voltage measurements and
    positron annihilation spectroscopy. It was found that irradiation damage in SiC wafer is
    significantly increased with the increase of radiation dose as observed in SEM. Irradiation also
    resulted in modification of crystallite size as identified by XRD. The resistance of a sample before
    irradiation was found to be 0.8 MΩ, whereas for a sample irradiated at 200 kGy, the resistance as
    measured by four point probe was 5.2 MΩ. It seems that the increase of resistance hence, reduction
    in conductivities could be due to defects induced by the radiation dose received then created
    leakage currents at both reverse and low-forward biases and creation of traps in the SiC.
    Meanwhile positron annihilation spectroscopy (PAS) was used to analyse the life time of irradiated
    samples which nonetheless shows that all irradiated sample have similar life time of 151 ps. It was
    observed that that no degradation process of materials experienced by SiC wafer irradiated at 500
    kGy.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links