Displaying all 10 publications

Abstract:
Sort:
  1. Nurul Adilah Z, Mohd Redzwan S
    J Sci Food Agric, 2017 Jun;97(8):2277-2281.
    PMID: 28111762 DOI: 10.1002/jsfa.8234
    Aflatoxin is a toxin produced by Aspergillus species of fungi. The main route of aflatoxin exposure is through the diet. Indeed, long-term aflatoxin exposure is linked to the development of hepatocellular carcinoma (HCC). Aflatoxin causes aflatoxicosis, which can be affected by several factors and is prevalent in many developing Asian and African countries. This mini-review discusses the effects of carbohydrate, fat and protein on aflatoxicosis based on findings from animal and human studies. It was found that high carbohydrate intake enhanced aflatoxicosis occurrence, while low ingestion of carbohydrate with caloric restriction slowed the symptoms associated with aflatoxicosis. Additionally, diets with low protein content worsened the symptoms related to HCC due to aflatoxin exposure. Nevertheless, a study reported that a high-protein diet favored detoxification of aflatoxin in vivo. There were also conflicting results on the influence of dietary fat, as high ingestion of fat enhanced aflatoxicosis development as compared with a low-fat diet. Moreover, the type of fat also plays a significant role in influencing aflatoxin toxicity. In regard to food safety, understanding the influence of macronutrients toward the progression of aflatoxicosis can improve preventive measures against human and animal exposure to aflatoxin. © 2017 Society of Chemical Industry.
  2. Nurul Adilah Z, Liew WP, Mohd Redzwan S, Amin I
    Biomed Res Int, 2018;2018:9568351.
    PMID: 29951550 DOI: 10.1155/2018/9568351
    Probiotic Lactobacillus casei Shirota (LcS) is a potential decontaminating agent of aflatoxin B1 (AFB1). However, few studies have investigated the influence of diet, especially a high protein (HP) diet, on the binding of AFB1 by probiotics. This research was conducted to determine the effect of HP diet on the ability of LcS to bind AFB1 and reduce aflatoxin M1 (AFM1) in AFB1-induced rats. Sprague Dawley rats were randomly divided into three groups: A (HP only), B (HP + 108 CFU LcS + 25 μg AFB1/kg BW), and C (HP + 25 μg AFB1/kg BW). Levels of AST and ALP were higher in all groups but other liver function's biomarkers were in the normal range, and the liver's histology showed no structural changes. The urea level of rats in group B (10.02 ± 0.73 mmol/l) was significantly lower (p < 0.05) than that of rats in group A (10.82 ± 0.26 mmol/l). The presence of carcinoma in the small intestine and colon was more obvious in group C than in group B. Moreover, rats in group B had significantly (p < 0.05) lower AFM1 concentration (0.39 ± 0.01 ng/ml) than rats in group C (5.22 ± 0.28 ng/ml). Through these findings, LcS supplementation with HP diet alleviated the adverse effects of AFB1 by preventing AFB1 absorption in the small intestine and reducing urinary AFM1.
  3. Liew WP, Mohd-Redzwan S
    PMID: 29535978 DOI: 10.3389/fcimb.2018.00060
    The secondary metabolites produced by fungi known as mycotoxins, are capable of causing mycotoxicosis (diseases and death) in human and animals. Contamination of feedstuffs as well as food commodities by fungi occurs frequently in a natural manner and is accompanied by the presence of mycotoxins. The occurrence of mycotoxins' contamination is further stimulated by the on-going global warming as reflected in some findings. This review comprehensively discussed the role of mycotoxins (trichothecenes, zearalenone, fumonisins, ochratoxins, and aflatoxins) toward gut health and gut microbiota. Certainly, mycotoxins cause perturbation in the gut, particularly in the intestinal epithelial. Recent insights have generated an entirely new perspective where there is a bi-directional relationship exists between mycotoxins and gut microbiota, thus suggesting that our gut microbiota might be involved in the development of mycotoxicosis. The bacteria-xenobiotic interplay for the host is highlighted in this review article. It is now well established that a healthy gut microbiota is largely responsible for the overall health of the host. Findings revealed that the gut microbiota is capable of eliminating mycotoxin from the host naturally, provided that the host is healthy with a balance gut microbiota. Moreover, mycotoxins have been demonstrated for modulation of gut microbiota composition, and such alteration in gut microbiota can be observed up to species level in some of the studies. Most, if not all, of the reported effects of mycotoxins, are negative in terms of intestinal health, where beneficial bacteria are eliminated accompanied by an increase of the gut pathogen. The interactions between gut microbiota and mycotoxins have a significant role in the development of mycotoxicosis, particularly hepatocellular carcinoma. Such knowledge potentially drives the development of novel and innovative strategies for the prevention and therapy of mycotoxin contamination and mycotoxicosis.
  4. Mohd-Redzwan S, Jamaluddin R, Abd-Mutalib MS, Ahmad Z
    Front Microbiol, 2013;4:334.
    PMID: 24312084 DOI: 10.3389/fmicb.2013.00334
    This mini review article described the exposure of aflatoxin in Malaysia, including its presence in the foodstuffs and the detection of aflatoxin biomarkers in human biological samples. Historically, the exposure of aflatoxin in Malaysia can be dated in 1960s where an outbreak of disease in pig farms caused severe liver damage to the animals. Later, an aflatoxicosis case in Perak in 1988 was reported and caused death to 13 children, as up to 3 mg of aflatoxin was present in a single serving of contaminated noodles. Since then, extensive research on aflatoxin has been conducted in Malaysia. The food commodities such as peanuts, cereals, spices, and their products are the main commodities commonly found to be contaminated with aflatoxin. Surprisingly, some of the contaminated foods had levels greater than the permissible limit adopted by the Malaysian Food Regulation 1985. Besides, exposure assessment through the measurement of aflatoxin biomarkers in human biological samples is still in its infancy stage. Nevertheless, some studies had reported the presence of these biomarkers. In fact, it is postulated that Malaysians are moderately exposed to aflatoxin compared to those high risk populations, where aflatoxin contamination in the diets is prevalent. Since the ingestion of aflatoxin could be the integral to the development of liver cancer, the incidence of cancer attributable by dietary aflatoxin exposure in Malaysia has also been reported and published in the literatures. Regardless of these findings, the more important task is to monitor and control humans from being exposed to aflatoxin. The enforcement of law is insufficient to minimize human exposure to aflatoxin. Preventive strategies include agricultural, dietary, and clinical measures should be implemented. With the current research on aflatoxin in Malaysia, a global networking for research collaboration is needed to expand the knowledge and disseminate the information to the global scientific community.
  5. Nikbakht Nasrabadi E, Jamaluddin R, Abdul Mutalib MS, Khaza'ai H, Khalesi S, Mohd Redzwan S
    J Appl Microbiol, 2013 May;114(5):1507-15.
    PMID: 23351087 DOI: 10.1111/jam.12148
    Aflatoxin B1 (AFB1 ) is considered as the most toxic food contaminant, and microorganisms, especially bacteria, have been studied for their potential to reduce the bioavailability of mycotoxins including aflatoxins. Therefore, this research investigated the efficacy of oral administration of Lactobacillus casei Shirota (LcS) in aflatoxin-induced rats.
  6. Mohd Redzwan S, Rosita J, Mohd Sokhini AM, Nurul 'Aqilah AR, Wang JS, Kang MS, et al.
    Int J Hyg Environ Health, 2014 Apr-May;217(4-5):443-51.
    PMID: 24095591 DOI: 10.1016/j.ijheh.2013.08.007
    Aflatoxin is ubiquitously found in many foodstuffs and produced by Aspergillus species of fungi. Of many aflatoxin metabolites, AFB1 is classified by the International Agency for Research on Cancer (IARC) as group one carcinogen and linked to the development of hepatocellular carcinoma (HCC). The study on molecular biomarker of aflatoxin provides a better assessment on the extent of human exposure to aflatoxin. In Malaysia, the occurrences of aflatoxin-contaminated foods have been documented, but there is a lack of data on human exposure to aflatoxin. Hence, this study investigated the occurrence of AFB1-lysine adduct in serum samples and its association with liver and kidney functions. 5ml fasting blood samples were collected from seventy-one subjects (n=71) for the measurement of AFB1-lysine adduct, albumin, total bilirubin, AST (aspartate aminotransferase), ALT (alanine transaminase), ALP (alkaline phosphatase), GGT (gamma-glutamyl transpeptidase), creatinine and BUN (blood urea nitrogen). The AFB1-lysine adduct was detected in all serum samples (100% detection rate) with a mean of 6.85±3.20pg/mg albumin (range: 1.13-18.85pg/mg albumin). Male subjects (mean: 8.03±3.41pg/mg albumin) had significantly higher adduct levels than female subjects (mean: 5.64±2.46pg/mg albumin) (p<0.01). It was noteworthy that subjects with adduct levels greater than average (>6.85pg/mg albumin) had significantly elevated level of total bilirubin (p<0.01), GGT (p<0.05) and creatinine (p<0.01). Nevertheless, only the level of total bilirubin, (r=0.347, p-value=0.003) and creatinine (r=0.318, p-value=0.007) showed significant and positive correlation with the level of AFB1-lysine adduct. This study provides a valuable insight on human exposure to aflatoxin in Malaysia. Given that aflatoxin can pose serious problem to the health, intervention strategies should be implemented to limit/reduce human exposure to aflatoxin. Besides, a study with a big sample size should be warranted in order to assess aflatoxin exposure in the general population of Malaysia.
  7. Mohd Redzwan S, Rosita J, Mohd Sokhini AM, Nurul Aqilah AR
    Bull Environ Contam Toxicol, 2012 Dec;89(6):1115-9.
    PMID: 23052590 DOI: 10.1007/s00128-012-0853-y
    This study aimed to find the association between urinary aflatoxin M(1) level and milk and dairy products consumption. Of 160 morning urine samples collected, aflatoxin M(1) was detected in 61.3 % samples (n = 98) [mean ± SD = 0.0234 ± 0.0177 ng/mL; range = 0-0.0747 ng/mL]. Of these positive samples, 67.3 % (n = 66) had levels above the limit of detection. Respondents with intake of milk and dairy products above median (67.79 g/day) had significantly high level of AFM(1) compared to those with low intake. A significant and positive association (φ = 0.286) was found between milk and dairy products consumption and urinary aflatoxin M(1) level.
  8. Liew WP, Nurul-Adilah Z, Than LTL, Mohd-Redzwan S
    Front Microbiol, 2018;9:1503.
    PMID: 30042748 DOI: 10.3389/fmicb.2018.01503
    The use of probiotic as dietary approach to prevent exposure to food contaminant, aflatoxin B1 (AFB1) has greatly increased. Several studies found that AFB1 binding to the bacterial cell wall is strain-specific. Moreover, the interaction between AFB1 and bacterial cell wall is not well-understood, thus warrants further investigation. This research was conducted to assess the ability of Lactobacillus casei Shirota (Lcs) to bind AFB1 at different concentrations and to determine AFB1 binding efficiency of different Lcs cell components including live cell, heat-treated, and cell wall. In addition, the interaction between AFB1 and Lcs was also evaluated via scanning electron microscopy (SEM) and through an animal study. The binding of AFB1 by all Lcs cell components depends on the concentration of available AFB1. Among all Lcs cell components, the live Lcs cells exhibited the highest binding efficiency (98%) toward AFB1. Besides, the SEM micrographs showed that AFB1 induced structural changes on the bacterial cell surface and morphology including rough and irregular surface along with a curve rod-shaped. In vivo experiment revealed that Lcs is capable to neutralize the toxicity of AFB1 on body weight and intestine through the binding process. The animal's growth was stunted due to AFB1 exposure, however, such effect was significantly (p < 0.05) alleviated by Lcs. This phenomenon can be explained by a significant (p < 0.05) decreased level of blood serum AFB1 by Lcs (49.6 ± 8.05 ng/mL) compared to AFB1-exposed rats without treatment (88.12 ± 10.65 ng/mL). Taken together, this study highlights the potential use of Lcs as a preventive agent against aflatoxicosis via its strong binding capability.
  9. Abolfathi M, Mohd-Yusof BN, Hanipah ZN, Mohd Redzwan S, Yusof LM, Khosroshahi MZ
    Complement Ther Med, 2020 Jan;48:102273.
    PMID: 31987257 DOI: 10.1016/j.ctim.2019.102273
    OBJECTIVE: The beneficial effects of carnitine supplementation on nonalcoholic fatty liver disease are unclear. We conducted a systematic review and meta-analysis to evaluate the effects of carnitine supplementation on liver function, lipid profile, body mass index, body weight, and homeostasis model assessment of insulin resistance in patients with nonalcoholic fatty liver disease.

    METHODS: A comprehensive search of PubMed, Web of Science, Scopus, Cochrane Library, and Google Scholar databases were performed. Only randomized placebo-controlled human studies that examined the effects of carnitine supplementation on liver function, lipid profile, body mass index, body weight, and homeostasis model assessment of insulin resistance up to September 2019 were included. Fixed effects or random-effects models were applied to compute the pooled effect size. Heterogeneity assessments were performed using Cochran's Q test and I-squared statistics. The quality of the studies was assessed using the Jaded scale.

    RESULTS: A total of 5 articles were selected, including 334 individuals (167 in control and 167 in intervention groups). The results demonstrated that carnitine supplementation significantly reduced homeostasis model assessment of insulin resistance (HOMA-IR) (WMD: -0.91; 95 % CI: -1.11, -0.72; p 

  10. Mohd Redzwan S, Abd Mutalib MS, Wang JS, Ahmad Z, Kang MS, Abdul Rahman N', et al.
    Br J Nutr, 2016 Jan 14;115(1):39-54.
    PMID: 26490018 DOI: 10.1017/S0007114515004109
    Human exposure to aflatoxin is through the diet, and probiotics are able to bind aflatoxin and prevent its absorption in the small intestine. This study aimed to determine the effectiveness of a fermented milk drink containing Lactobacillus casei Shirota (LcS) (probiotic drink) to prevent aflatoxin absorption and reduce serum aflatoxin B1-lysine adduct (AFB1-lys) and urinary aflatoxin M1 concentrations. The present study was a randomised, double-blind, cross-over, placebo-controlled study with two 4-week intervention phases. In all, seventy-one subjects recruited from the screening stage were divided into two groups--the Yellow group and the Blue group. In the 1st phase, one group received probiotic drinks twice a day and the other group received placebo drinks. Blood and urine samples were collected at baseline, 2nd and 4th week of the intervention. After a 2-week wash-out period, the treatments were switched between the groups, and blood and urine samples were collected at the 6th, 8th and 10th week (2nd phase) of the intervention. No significant differences in aflatoxin biomarker concentrations were observed during the intervention. A within-group analysis was further carried out. Aflatoxin biomarker concentrations were not significantly different in the Yellow group. Nevertheless, ANOVA for repeated measurements indicated that AFB1-lys concentrations were significantly different (P=0·035) with the probiotic intervention in the Blue group. The 2nd week AFB1-lys concentrations (5·14 (SD 2·15) pg/mg albumin (ALB)) were significantly reduced (P=0·048) compared with the baseline (6·24 (SD 3·42) pg/mg ALB). Besides, the 4th week AFB1-lys concentrations were significantly lower (P<0·05) with probiotic supplementation than with the placebo. Based on these findings, a longer intervention study is warranted to investigate the effects of continuous LcS consumption to prevent dietary aflatoxin exposure.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links