Displaying all 6 publications

Abstract:
Sort:
  1. Shafiee FN, Mohd Noor SA, Mohd Abdah MAA, Jamal SH, Samsuri A
    Heliyon, 2024 Apr 30;10(8):e29512.
    PMID: 38699753 DOI: 10.1016/j.heliyon.2024.e29512
    The incorporation of intermittent renewable energy sources into a consistently controlled power transmission system hinges on advancements in energy storage technologies. Sodium ion batteries (SIBs) are emerging as a primary and viable alternative material due to their electrochemical activity, presenting a potential replacement for the next generation of lithium-ion battery (LIB) energy storage materials. However, this transition may necessitate significant alterations in the anode material, given the incompatibility of the current anode with sodium ions and the electrolyte. This review provides a comprehensive summary of various anode materials employed in SIBs, categorized according to their storage mechanisms. Additionally, it explores the growing focus on utilizing hard carbon as an anode material, driven by factors such as its relatively high specific capacity compared to graphite, cost-effective production, and eco-friendly properties as it can be derived from biomass. The review further addresses recent progress in hard carbon, detailing production methods, modifications, challenges, limitations in integrating hard carbon into the anode of SIBs, and suggests potential directions for future research.
  2. Rusly SNA, Jamal SH, Samsuri A, Mohd Noor SA, Abdul Rahim KS
    Heliyon, 2024 Nov 15;10(21):e39631.
    PMID: 39524708 DOI: 10.1016/j.heliyon.2024.e39631
    The field of propellants has recently witnessed dynamic shift, including advancements in propulsion technology and a growing emphasis on the development of environmentally friendly propellants. Nitrate ester (NE) are extensively used in solid propellants, exhibiting chemical instability as they undergo decomposition reactions. Stabilization is a crucial aspect in propellant, ensuring the safety and reliable performance of energetic materials. Stabilizer plays a vital role in inhibiting or slowing down the autocatalytic decomposition reaction of propellants. In response to grow health and environmental concerns, there is a continuous effort to explore and evaluate green stabilizers designed to replace traditional stabilizers, which have been associated with adverse environmental impacts. Therefore, this study aimed to provide an overview of the current research carried out in the field of NE-based propellants, emphasizing the most significant work undertaken on green stabilizer materials for NE-based propellants. A comprehensive review of various environmentally friendly and low-toxicity stabilizers employed in propellants are presented, and their effects on the stability and shelf-life performance of NE-based propellants are discussed. Furthermore, this paper delves into the stabilization mechanisms of green stabilizers to mitigate decomposition reactions, thereby preventing unwanted side effects and ensuring long-term storage stability. Through a comprehensive review of recent developments, the manuscript highlights the successes and challenges associated with the incorporation of green stabilizers in NE-based propellants formulations. Finally, the review concludes by outlining future research directions and opportunities for innovation in sustainable and green stabilizers as well as key issues that need to be addressed and resolved. The comprehensive review and insights provided in this study contribute to the ongoing efforts in developing safer and more sustainable propellant technologies.
  3. Dzulkurnain NA, Mokhtar M, Rashid JIA, Knight VF, Wan Yunus WMZ, Ong KK, et al.
    Polymers (Basel), 2021 Aug 15;13(16).
    PMID: 34451266 DOI: 10.3390/polym13162728
    Conducting polymers have been widely used in electrochemical sensors as receptors of the sensing signal's analytes and transducers. Polypyrrole (PPy) conducting polymers are highlighted due to their good electrical conductive properties, ease in preparation, and flexibility of surface characteristics. The objective of this review paper is to discuss the theoretical background of the two main types of electrochemical detection: impedimetric and voltammetric analysis. It also reviews the application and results obtained from these two electrochemical detections when utilizing PPy as a based sensing material in electrochemical sensor. Finally, related aspects in electrochemical sensor construction using PPy will also be discussed. It is anticipated that this review will provide researchers, especially those without an electrochemical analysis background, with an easy-to-understand summary of the concepts and technologies used in electrochemical sensor research, particularly those interested in utilizing PPy as a based sensing material.
  4. Osman MJ, Abdul Rashid JI, Khim OK, Zin Wan Yunus WM, Mohd Noor SA, Mohd Kasim NA, et al.
    RSC Adv, 2021 Jul 27;11(42):25933-25942.
    PMID: 35479481 DOI: 10.1039/d1ra04318h
    Acephate (Ac) is an organophosphate (OP) compound, which is able to inhibit the activity of acetylcholinesterase. Thus, the aim of this study was to optimize the detection of Ac using a thiolated acephate binding aptamer-citrate capped gold nanoparticle (TABA-Cit-AuNP) sensor that also incorporated an image processing technique. The effects of independent variables, such as the incubation period of TABA-Cit-AuNPs (3-24 h) for binding TABA to Cit-AuNPs, the concentration of phosphate buffer saline (PBS) (0.001-0.01 M), the concentration of thiolated acephate binding aptamer (TABA) (50-200 nM), and the concentration of magnesium sulphate (MgSO4) (1-300 mM) were investigated. A quadratic model was developed using a central composite design (CCD) from response surface methodology (RSM) to predict the sensing response to Ac. The optimum conditions such as the concentration of PBS (0.01 M), the concentration of TABA (200 nM), the incubation period of TABA-Cit-AuNPs (3 h), and the concentration of MgSO4 (1 mM) were used to produce a TABA-Cit-AuNPs sensor for the detection of Ac. Under optimal conditions, this sensor showed a detection ranging from 0.01 to 2.73 μM and a limit of detection (LOD) of 0.06 μM. Real sample analysis demonstrated this aptasensor as a good analytical method to detect Ac.
  5. Norrrahim MNF, Mohd Kasim NA, Knight VF, Ong KK, Mohd Noor SA, Abdul Halim N, et al.
    Polymers (Basel), 2021 Sep 24;13(19).
    PMID: 34641067 DOI: 10.3390/polym13193249
    The wide availability and diversity of dangerous microbes poses a considerable problem for health professionals and in the development of new healthcare products. Numerous studies have been conducted to develop membrane filters that have antibacterial properties to solve this problem. Without proper protective filter equipment, healthcare providers, essential workers, and the general public are exposed to the risk of infection. A combination of nanotechnology and biosorption is expected to offer a new and greener approach to improve the usefulness of polysaccharides as an advanced membrane filtration material. Nanocellulose is among the emerging materials of this century and several studies have proven its use in filtering microbes. Its high specific surface area enables the adsorption of various microbial species, and its innate porosity can separate various molecules and retain microbial objects. Besides this, the presence of an abundant OH groups in nanocellulose grants its unique surface modification, which can increase its filtration efficiency through the formation of affinity interactions toward microbes. In this review, an update of the most relevant uses of nanocellulose as a new class of membrane filters against microbes is outlined. Key advancements in surface modifications of nanocellulose to enhance its rejection mechanism are also critically discussed. To the best of our knowledge, this is the first review focusing on the development of nanocellulose as a membrane filter against microbes.
  6. Faiz Norrrahim MN, Mohd Kasim NA, Knight VF, Mohamad Misenan MS, Janudin N, Ahmad Shah NA, et al.
    RSC Adv, 2021 Feb 10;11(13):7347-7368.
    PMID: 35423275 DOI: 10.1039/d0ra08005e
    Chemical contaminants such as heavy metals, dyes, and organic oils seriously affect the environment and threaten human health. About 2 million tons of waste is released every day into the water system. Heavy metals are the largest contributor which cover about 31% of the total composition of water contaminants. Every day, approximately 14 000 people die due to environmental exposure to selected chemicals. Removal of these contaminants down to safe levels is expensive, high energy and unsustainable by current approaches such as oxidation, biodegradation, photocatalysis, precipitation, reverse osmosis and adsorption. A combination of biosorption and nanotechnology offers a new way to remediate these chemical contaminants. Nanostructured materials are proven to have higher adsorption capacities than the same material in its larger-scale form. Nanocellulose is very promising as a high-performance bioadsorbent due to its interesting characteristics of high adsorption capacity, high mechanical strength, hydrophilic surface chemistry, renewability and biodegradability. It has been proven to have higher adsorption capacity and better binding affinity than other similar materials at the macroscale. The high specific surface area and abundance of hydroxyl groups within lead to the possible functionalization of this material for decontamination purposes. Several research papers have shown the effectiveness of nanocellulose in the remediation of chemical contaminants. This review aims to provide an overview of the most recent developments regarding nanocellulose as an adsorbent for chemical contamination remediation. Recent advancements regarding the modification of nanocellulose to enhance its adsorption efficiency towards heavy metals, dyes and organic oils were highlighted. Moreover, the desorption capability and environmental issue related to every developed nanocellulose-based adsorbent were also tackled.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links