Displaying all 4 publications

Abstract:
Sort:
  1. Asma Liyana Shaari, Misni Surif, Faazaz Abd. Latiff, Wan Maznah Wan Omar, Mohd Noor Ahmad
    Trop Life Sci Res, 2011;22(1):-.
    MyJurnal
    Many reports have revealed that the abundance of microalgae in shrimp ponds vary with changes in environmental factors such as light, temperature, pH, salinity and nutrient level throughout a shrimp culture period. In this study, shrimp cultivation period was divided into three stages (initial = week 0–5, mid = week 6–10 and final = week 11–15). Physical and chemical parameters throughout the cultivation period were studied and species composition of microalgae was monitored. Physical parameters were found to
    fluctuate widely with light intensity ranging between 182.23–1278 µmol photon m–2s–1, temperature between 29.56ºC –31.59ºC, dissolved oxygen (DO) between 4.56–8.21 mg/l, pH between 7.65–8.49 and salinity between 20‰–30‰. Ammonium (NH4+-N), nitrite (NO2– -N), nitrate (NO3– -N), and orthophosphate (PO43– -P) concentrations in the pond at all cultivation stages ranged from 0.017 to 0.38 mg/l, 0.24 to 2.12 mg/l, 0.06 to 0.98 mg/l and 0.16 to 1.93 mg/l respectively. Statistical test (ANOVA) showed that there were no significant difference (p
  2. Mohammadi H, Baba Ismail YM, Shariff KA, Mohd Noor AF
    J Mech Behav Biomed Mater, 2021 04;116:104379.
    PMID: 33561674 DOI: 10.1016/j.jmbbm.2021.104379
    Despite the excellent in vitro and in vivo performance of akermanite ceramic, its poor toughness and strength limit the biomedical application, particularly under load. Herein, the incorporation of strontium enhanced the physicomechanical properties of akermanite and this is ascribed to the decrease in grain size and better sinterability. To investigate the biological performance, the bone-cell interaction with sintered pellets was assessed by in vitro biocompatibility with human fetal osteoblast cell (hFOB). The cell viability using MTT assay revealed that the Ca1.9Sr0.1MgSi2O7 pellets with finer grain size provided better interaction between the cells compared to the unsubstituted counterpart with larger grain size. Our findings highlighted that the synergistic effect of controlled degradation rate and release of Sr2+ into the medium enhanced the in vitro biological properties of akermanite-based materials.
  3. Myat-Htun M, Mohd Noor AF, Kawashita M, Baba Ismail YM
    J Mech Behav Biomed Mater, 2022 Feb 07;128:105122.
    PMID: 35168129 DOI: 10.1016/j.jmbbm.2022.105122
    Dense iron-doped akermanite ceramics with 0.3, 0.6 and 0.9 mol% of Fe3+ were synthesized via high-speed planetary ball milling and subsequently subjected to sintering at 1200 and 1250 °C. The aim of the current work was to investigate the effect of trivalent iron (Fe3+) in tuning the physicomechanical and in vitro biological properties of akermanite. The incorporation of Fe3+ into akermanite host and sintering at a high temperature of 1200 °C resulted in a synergistic effect in enhancing the sinterability and densification of akermanite ceramics. Although varying the Fe3+ content, it was found that similar densification and mechanical properties (i.e., diametral tensile strength, Vickers microhardness and fracture toughness) were observed for the doped ceramics at 1250 °C, indicating that this newly developed formulation is temperature-dependent. Fe3+-doped akermanite ceramics revealed greater in vitro bioactivity as compared to undoped akermanite, demonstrated by better coverage of needle-like apatite precipitates after 21 days of immersion in simulated body fluid. Additionally, Rat-1 cells cultured in direct contact with Fe3+-doped akermanite ceramics showed almost double levels of cell proliferation than their undoped counterpart on both 3 and 7 days of culture. Our finding suggests that 0.9Fe-AK ceramic is a suitable formulation to be considered for future bone substitute material as it provides sufficient mechanical strength as well as good bioactivity and the ability to encourage cell proliferation.
  4. Kyaw HMA, Ishak MN, Mohd Noor AF, Kawamura G, Matsuda A, Yaacob KA
    Nanotechnology, 2024 Mar 18;35(23).
    PMID: 38387094 DOI: 10.1088/1361-6528/ad2c5a
    Cadmium selenide (CdSe) quantum dots (QDs) with different size, 2.5 and 3.2 nm, were successfully deposited on mesoporous titanium dioxide (TiO2) (Degussa-P25) nanostructures by electrophoretic deposition method (EPD) at the applied voltage 100 V for 120 s deposition time. In this study, the morphology of CdSe films deposited by EPD and the performance of the film when assembled into a solar cell were investigated. From the field emission scanning electron microscopy cross-section, the thickness of the CdSe nanoparticles with size 2.5 nm films were 3.4 and 3.0μm for CdSe 3.2 nm nanoparticles film. The structure of 2.5 nm is denser than compare of 3.2 nm CdSe nanoparticles. From UV visible spectroscopy, the band gap calculated for 2.5 nm CdSe nanoparticles is 2.28 eV and for 3.2 nm is 2.12 eV. Photovoltaic characterization was performed under an illumination of 100 mW cm-2. A photovoltaic conversion efficiency of 1.81% was obtained for 2.5 nm CdSe and 2.1% was obtained for 3.2 nm CdSe nanoparticles. This result shows that the photovoltaic efficiency is dependent on CdSe nanoparticle size.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links