Displaying all 4 publications

Abstract:
Sort:
  1. Jahari PNS, Mohd Azman S, Munian K, Ahmad Ruzman NH, Shamsir MS, Richter SR, et al.
    Mitochondrial DNA B Resour, 2021 Feb 11;6(2):502-504.
    PMID: 33628904 DOI: 10.1080/23802359.2021.1872433
    Two mitogenomes of long-tailed giant rat, Leopoldamys sabanus (Thomas, 1887), which belongs to the family Muridae were sequenced and assembled in this study. Both mitogenomes have a length of 15,973 bp and encode 13 protein-coding genes (PCGs), 22 transfer RNA genes, two ribosomal RNA genes and one control region. The circular molecule of L. sabanus has a typical vertebrate gene arrangement. Phylogenetic and BLASTn analysis using 10 Leopoldamys species mitogenomes revealed sequence variation occurred within species from different time zones. Along with the taxonomic issues, this suggests a landscape change might influence genetic connectivity.
  2. Jahari PNS, Mohd Azman S, Munian K, Zakaria NA, Omar MSS, Richter SR, et al.
    Mitochondrial DNA B Resour, 2021 Jan 12;6(1):53-55.
    PMID: 33521264 DOI: 10.1080/23802359.2020.1846472
    We assembled the complete mitogenome of Cynopterus sphinx (Vahl, 1797) of the family Pteropodidae originating from Malaysia. The total mitogenome size was 16,710bp which consists of 37 genes (13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and one control region). A phylogenetic and BLASTn result showed the mitogenome sequence in this study varies by nearly 7% (93.48% similarity) from the same species in Cambodia. The next closest match of BLASTn was at 92% similarity to the C. brachyotis. This suggests the species-complex in Cynopterus sp. has given rise to the genetic variability.
  3. Jahari PNS, Mohd Azman S, Munian K, M Fauzi NF, Shamsir MS, Richter SR, et al.
    Mitochondrial DNA B Resour, 2020 Sep 01;5(3):3262-3264.
    PMID: 33458132 DOI: 10.1080/23802359.2020.1812449
    The increasing interest in understanding the evolutionary relationship between members of the Pteropodidae family has been greatly aided by genomic data from the Old World fruit bats. Here we present the complete mitogenome of Geoffroy's rousette, Rousettus amplexicaudatus found in Peninsular Malaysia . The mitogenome constructed is 16,511bp in length containing 37 genes; 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and a D-loop region. The overall base composition is estimated to be 32.28% for A, 25.64% for T, 14.09% for G and 27.98% for C, indicating a slightly AT rich feature (57.93%). A phylogenetic and BLASTn analysis against other available mitogenomes showed Malaysian R. amplexicaudatus matched 98% similarity to the same species in Cambodia and Vietnam. However, it differed considerably (92.53% similarity) with the same species in the Philippines. This suggests flexibility in Rousettus sp. with regards to adapting to mesic and dry habitats, ability for long-distance dispersal and remarkably precise lingual echolocation thus supporting its wide-range distribution and colonization. Further taxonomical and mitogenomic comparatives are required in resolving the evolutionary relationship between Rousettus spp.
  4. Jahari PNS, Mohd Azman S, Munian K, Ahmad Ruzman NH, Shamsir MS, Richter SR, et al.
    Mitochondrial DNA B Resour, 2020 Aug 26;5(3):3004-3006.
    PMID: 33458034 DOI: 10.1080/23802359.2020.1797583
    The mitogenome of a plantain squirrel, Callosciurus notatus, collected from Bukit Tarek Forest Reserve (Extension), Selangor, Malaysia was sequenced using BGISEQ-500RS technology. The 16,582 bp mitogenome consists of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 control region. A phylogenetic and BLASTn analysis against other available datasets showed that the mitogenome matched with 99.49% similarity to a previously published C. notatus mitogenome from Peninsular Malaysia. However, it also diverged by nearly 8% (92.24% match) from a second previously published mitogenome for the same species, sampled in East Kalimantan, Indonesia. This suggests a difference in landscape features between both localities might affect its genetic connectivity.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links