Displaying all 7 publications

Abstract:
Sort:
  1. Rajendra S, Ackroyd R, Karim N, Mohan C, Ho JJ, Kutty MK
    J Clin Pathol, 2006 Sep;59(9):952-7.
    PMID: 16467164
    Human leucocyte antigen (HLA) expression is altered in oesophageal carcinomas compared with normal tissue. It is unclear, however, whether this phenotype precedes malignant transformation or results as a consequence of it.
  2. Rajendra S, Ackroyd R, Murad S, Mohan C, Ho JJ, Goh KL, et al.
    Aliment Pharmacol Ther, 2005 Jun 1;21(11):1377-83.
    PMID: 15932368
    Characteristic immune profiles have been demonstrated in gastro-oesophageal reflux disease. However, the genetic basis of gastro-oesophageal reflux disease remains unclear.
  3. Sittidilokratna N, Dangtip S, Sritunyalucksana K, Babu R, Pradeep B, Mohan CV, et al.
    Dis Aquat Organ, 2009 Apr 27;84(3):195-200.
    PMID: 19565696 DOI: 10.3354/dao02059
    Laem-Singh virus (LSNV) is a positive-sense single-stranded RNA (ssRNA) virus that was recently identified in Penaeus monodon shrimp in Thailand displaying signs of slow growth syndrome. A total of 326 shrimp collected between 1998 and 2007 from countries in the Indo-Pacific region were tested by RT-PCR for evidence of LSNV infection. The samples comprised batches of whole postlarvae, and lymphoid organ, gill, muscle or pleopod tissue of juvenile, subadult and adult shrimp. LSNV was not detected in 96 P. monodon, P. japonicus or P. merguiensis from Australia or 16 P. monodon from Fiji, Philippines, Sri Lanka and Mozambique. There was no evidence of LSNV infection in 73 healthy juvenile P. vannamei collected during 2006 from ponds at 9 locations in Thailand. However, LNSV was detected in each of 6 healthy P. monodon tested from Malaysia and Indonesia, 2 of 6 healthy P. monodon tested from Vietnam and 39 of 40 P. monodon collected from slow-growth ponds in Thailand. A survey of 81 P. monodon collected in 2007 from Andhra Pradesh, India, indicated 56.8% prevalence of LSNV infection but no clear association with disease or slow growth. Phylogenetic analysis of PCR amplicons obtained from samples from India, Vietnam, Malaysia and Thailand indicated that nucleotide sequence variation was very low (>98% identity) and there was no clustering of viruses according to site of isolation or the health status of the shrimp. The data suggests that LSNV exists as a single genetic lineage and occurs commonly in healthy P. monodon in parts of Asia.
  4. Nicholson P, Fathi MA, Fischer A, Mohan C, Schieck E, Mishra N, et al.
    J Fish Dis, 2017 Dec;40(12):1925-1928.
    PMID: 28590067 DOI: 10.1111/jfd.12650
  5. Verma DK, Sood N, Paria A, Swaminathan TR, Mohan CV, Rajendran KV, et al.
    Virus Res, 2021 Nov 12;308:198625.
    PMID: 34780882 DOI: 10.1016/j.virusres.2021.198625
    The tilapia lake virus (TiLV), a highly infectious negative-sense single-stranded segmented RNA virus, has caused several outbreaks worldwide since its first report from Israel in 2014, and continues to pose a major threat to the global tilapia industry. Despite its economic importance, little is known about the underlying mechanisms in the genomic evolution of this highly infectious viral pathogen. Using phylogenomic approaches to the genome sequences of TiLV isolates from various geographic regions, we report on the pervasive role of reassortment, selection, and mutation in TiLV evolution. Our findings provided the evidence of genome-wide reassortment in this newly discovered RNA virus. The rate of non-synonymous (dN) to synonymous (dS) substitutions was less than one (dN/dS = 0.076 to 0.692), indicating that each genomic segment has been subjected to purifying selection. Concurrently, the rate of nucleotide substitution for each genomic segment was in the order of 1-3 × 10-3 nucleotide substitutions per site per year, which is comparable to the rate of other RNA viruses. Collectively, in line with the results of the previous studies, our results demonstrated that reassortment is the dominant force in the evolution and emergence of this highly infectious segmented RNA virus.
  6. Debnath PP, Dinh-Hung N, Taengphu S, Nguyen VV, Delamare-Deboutteville J, Senapin S, et al.
    J Fish Dis, 2022 Jan;45(1):77-87.
    PMID: 34580880 DOI: 10.1111/jfd.13537
    Sixteen countries, including Bangladesh, have reported the presence of tilapia lake virus (TiLV), an emerging tilapia pathogen. Fish polyculture is a common farming practice in Bangladesh. Some unusual mortalities reported in species co-cultivated with TiLV-infected tilapia led us to investigate whether any of the co-cultivated species would also test positive for TiLV and whether they were susceptible to TiLV infection under controlled laboratory experiments. Using 183 samples obtained from 15 farms in six districts across Bangladesh, we determined that 20% of the farms tested positive for TiLV in tilapia, while 15 co-cultivated fish species and seven other invertebrates (e.g. insects and crustaceans) considered potential carriers all tested negative. Of the six representative fish species experimentally infected with TiLV, only Nile tilapia showed the typical clinical signs of the disease, with 70% mortality within 12 days. By contrast, four carp species and one catfish species challenged with TiLV showed no signs of TiLV infection. Challenged tilapia were confirmed as TiLV-positive by RT-qPCR, while challenged carp and walking catfish all tested negative. Overall, our field and laboratory findings indicate that species used in polycultures are not susceptible to TiLV. Although current evidence suggests that TiLV is likely host-specific to tilapia, targeted surveillance for TiLV in other fish species in polyculture systems should continue, in order to prepare for a possible future scenario where TiLV mutates and/or adapts to new host(s).
  7. Delamare-Deboutteville J, Taengphu S, Gan HM, Kayansamruaj P, Debnath PP, Barnes A, et al.
    J Fish Dis, 2021 Oct;44(10):1491-1502.
    PMID: 34101853 DOI: 10.1111/jfd.13467
    Infectious diseases represent one of the major challenges to sustainable aquaculture production. Rapid, accurate diagnosis and genotyping of emerging pathogens during early-suspected disease cases is critical to facilitate timely response to deploy adequate control measures and prevent or reduce spread. Currently, most laboratories use PCR to amplify partial pathogen genomic regions, occasionally combined with sequencing of PCR amplicon(s) using conventional Sanger sequencing services for confirmatory diagnosis. The main limitation of this approach is the lengthy turnaround time. Here, we report an innovative approach using a previously developed specific PCR assay for pathogen diagnosis combined with a new Oxford Nanopore Technologies (ONT)-based amplicon sequencing method for pathogen genotyping. Using fish clinical samples, we applied this approach for the rapid confirmation of PCR amplicon sequences identity and genotyping of tilapia lake virus (TiLV), a disease-causing virus affecting tilapia aquaculture globally. The consensus sequences obtained after polishing exhibit strikingly high identity to references derived by Illumina and Sanger methods (99.83%-100%). This study suggests that ONT-based amplicon sequencing is a promising platform to deploy in regional aquatic animal health diagnostic laboratories in low- and medium-income countries, for fast identification and genotyping of emerging infectious pathogens from field samples within a single day.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links