Displaying all 6 publications

Abstract:
Sort:
  1. Sadiq MB, Ramanoon SZ, Shaik Mossadeq WMM, Mansor R, Syed-Hussain SS
    Front Vet Sci, 2021;8:631844.
    PMID: 34179155 DOI: 10.3389/fvets.2021.631844
    Background: The objectives of this study were to, (1) investigate the impact of the Dutch five-step hoof trimming (HT) technique on time to lameness and hoof lesion prevalence in grazing (GR) and non-grazing (NGR) dairy cows, and (2) determine the association between potential benefits of HT and animal-based welfare measures during lactation. A total of 520 non-lame cows without hoof lesions from 5 dairy farms (GR = 2, NGR = 3) were enrolled at early (within 30 days in milk; DIM) and late lactation (above 200 DIM), and randomly allocated to either trimmed (HGR or HNGR) or control groups (CON-GR and CON-NGR). Locomotion scores, body condition, hock condition, leg hygiene, and hoof health were assessed at monthly intervals until the following 270 days in milk. The data were analyzed using Kaplan-Meier survival analysis, multivariable Cox, and logistic regression models. The overall incidence rate of lameness was 36.2 cases/100 cows/month, with corresponding rates of 27.4, 31.9, 48.4, and 45.8 cases/100 cows/month in HGR, HNGR, CON-GR, and CON-NGR, respectively. Time to first lameness event was significantly higher in HGR (mean ± S.E; 8.12 ± 0.15) compared to CON-GR (7.36 ± 0.26), and in HNGR (8.05 ± 0.16) compared to CON-NGR (7.39 ± 0.23). The prevalence of hoof lesions in the enrolled cows was 36.9%, with a higher occurrence in CON-GR (48.8%) than HGR (23.2%), and in CON-NGR (52.6%) compared to HNGR (32.2%). The majority of hoof lesions were non-infectious in grazing (HGR vs. CON-GR; 21.3 vs. 33.3%) and non-grazing herds (HNGR vs. CON-NGR; 25.0 vs. 40.4%). The risk of lameness was higher in underconditioned cows (Hazard ratio; HR = 3.1, 95% CI 1.2-7.4), presence of hoof lesion (HR = 33.1, 95% CI 17.6-62.5), and there was variation between farms. Aside HT, lower parity (OR = 0.4, 95% CI 0.2-0.8), normal hock condition (OR = 0.06; 95% 0.01-0.29), and absence of overgrown hoof (OR = 0.4; 95% 0.2-0.7) were protective against non-infectious hoof lesions. Functional HT is beneficial as a lameness preventive strategy during lactation; however, ensuring older cows are in good body condition and free from hock injuries are equally important.
  2. Ali SG, Jalal M, Ahmad H, Umar K, Ahmad A, Alshammari MB, et al.
    Molecules, 2022 Dec 08;27(24).
    PMID: 36557818 DOI: 10.3390/molecules27248685
    Antimicrobial resistance has posed a serious health concern worldwide, which is mainly due to the excessive use of antibiotics. In this study, gold nanoparticles synthesized from the plant Tinospora cordifolia were used against multidrug-resistant Pseudomonas aeruginosa. The active components involved in the reduction and stabilization of gold nanoparticles were revealed by gas chromatography-mass spectrophotometry(GC-MS) of the stem extract of Tinospora cordifolia. Gold nanoparticles (TG-AuNPs) were effective against P. aeruginosa at different concentrations (50,100, and 150 µg/mL). TG-AuNPs effectively reduced the pyocyanin level by 63.1% in PAO1 and by 68.7% in clinical isolates at 150 µg/mL; similarly, swarming and swimming motilities decreased by 53.1% and 53.8% for PAO1 and 66.6% and 52.8% in clinical isolates, respectively. Biofilm production was also reduced, and at a maximum concentration of 150 µg/mL of TG-AuNPs a 59.09% reduction inPAO1 and 64.7% reduction in clinical isolates were observed. Lower concentrations of TG-AuNPs (100 and 50 µg/mL) also reduced the pyocyanin, biofilm, swarming, and swimming. Phenotypically, the downregulation of exopolysaccharide secretion from P. aeruginosa due to TG-AuNPs was observed on Congo red agar plates.
  3. Adeleke AO, Royahu CO, Ahmad A, Dele-Afolabi TT, Alshammari MB, Imteaz M
    PLoS One, 2024;19(2):e0294286.
    PMID: 38386950 DOI: 10.1371/journal.pone.0294286
    This study highlights the effectiveness of oyster shell biocomposite for the biosorption of Cd(II) and Pb(II) ions from an aqueous solution. The aim of this work was to modify a novel biocomposite derived from oyster shell for the adsorption of Cd(II) and Pb(II) ions from aqueous solution. The studied revealed the specific surface BET surface area was 9.1476 m2/g. The elemental dispersive x-ray analysis (EDS) indicated that C, O, Ag, Ca were the predominant elements on the surface of the biocomposite after which metals ions of Cd and Pb were noticed after adsorption. The Fourier transform Irradiation (FT-IR) revealed the presence of carboxyl and hydroxyl groups on the surface. The effect of process variables on the adsorption capacity of the modified biocomposite was examined using the central composite design (CCD) of the response surface methodology (RSM). The process variables which include pH, adsorbent dose, the initial concentration and temperature were the most effective parameters influencing the uptake capacity. The optimal process conditions of these parameters were found to be pH, 5.57, adsorbent dose, 2.53 g/L, initial concentration, 46.76 mg/L and temperature 28.48°C for the biosorption of Cd(II) and Pb(II) ions from aqueous solution at a desirability coefficient of 1. The analysis of variance (ANOVA) revealed a high coefficient of determination (R2 > 0.91) and low probability coefficients for the responses (P < 0.05) which indicated the validity and aptness of the model for the biosorption of the metal ions. Experimental isotherm data fitted better to the Langmuir model and the kinetic data fitted better to the pseudo-second-order model. Maximun Cd(II) and Pb(II) adsorption capacities of the oyster shell biocomposite were 97.54 and 78.99 mg/g respectively and was obtained at pH 5.56 and 28.48°C. This investigation has provided the possibility of the utilization of alternative biocomposite as a sustainable approach for the biosorption of heavy metal ions from the wastewater stream.
  4. Endersby-Harshman NM, Ali A, Alhumrani B, Alkuriji MA, Al-Fageeh MB, Al-Malik A, et al.
    Parasit Vectors, 2021 Jul 12;14(1):361.
    PMID: 34247634 DOI: 10.1186/s13071-021-04867-3
    BACKGROUND: Dengue suppression often relies on control of the mosquito vector, Aedes aegypti, through applications of insecticides of which the pyrethroid group has played a dominant role. Insecticide resistance is prevalent in Ae. aegypti around the world, and the resulting reduction of insecticide efficacy is likely to exacerbate the impact of dengue. Dengue has been a public health problem in Saudi Arabia, particularly in Jeddah, since its discovery there in the 1990s, and insecticide use for vector control is widespread throughout the city. An alternative approach to insecticide use, based on blocking dengue transmission in mosquitoes by the endosymbiont Wolbachia, is being trialed in Jeddah following the success of this approach in Australia and Malaysia. Knowledge of insecticide resistance status of mosquito populations in Jeddah is a prerequisite for establishing a Wolbachia-based dengue control program as releases of Wolbachia mosquitoes succeed when resistance status of the release population is similar to that of the wild population.

    METHODS: WHO resistance bioassays of mosquitoes with deltamethrin, permethrin and DDT were used in conjunction with TaqMan® SNP Genotyping Assays to characterize mutation profiles of Ae. aegypti.

    RESULTS: Screening of the voltage-sensitive sodium channel (Vssc), the pyrethroid target site, revealed mutations at codons 989, 1016 and 1534 in Ae. aegypti from two districts of Jeddah. The triple mutant homozygote (1016G/1534C/989P) was confirmed from Al Safa and Al Rawabi. Bioassays with pyrethroids (Type I and II) and DDT showed that mosquitoes were resistant to each of these compounds based on WHO definitions. An association between Vssc mutations and resistance was established for the Type II pyrethroid, deltamethrin, with one genotype (989P/1016G/1534F) conferring a survival advantage over two others (989S/1016V/1534C and the triple heterozygote). An indication of synergism of Type I pyrethroid activity with piperonyl butoxide suggests that detoxification by cytochrome P450s accounts for some of the pyrethroid resistance response in Ae. aegypti populations from Jeddah.

    CONCLUSIONS: The results provide a baseline for monitoring and management of resistance as well as knowledge of Vssc genotype frequencies required in Wolbachia release populations to ensure homogeneity with the target field population. Vssc mutation haplotypes observed show some similarity with those from Ae. aegypti in southeast Asia and the Indo-Pacific, but the presence of the triple mutant haplotype in three genotypes indicates that the species in this region may have a unique population history.

  5. Abbasi SA, Rehman W, Rahim F, Hussain R, Hawsawi MB, Alluhaibi MS, et al.
    PMID: 39565952 DOI: 10.1515/znc-2024-0202
    Diabetes mellitus (DM) is a disorder which is raised at the alarming level and it is characterized by the hyperglycemia results from the impaired action of insulin, production of insulin or both of these simultaneously. Consequently, it causes problems or failure of different body organs such as kidneys, heart, eyes, nerve system. Since this disease cannot be completely cured until now, we aimed to design series of enzymes inhibitors and tested them for DM treatment. In this series, benzimidazole-based thiazolidinone bearing chalcone derivatives completed in a four step reaction and their structures were confirmed through various spectroscopic techniques. A significant efficacy on antidiabetic enzymes was observed, with IC50 values ranging from 25.05 ± 0.04 to 56.08 ± 0.07 μM for α-amylase and 22.07 ± 0.02 to 53.06 ± 0.07 μM for α-glucosidase. The obtained results were compared to those of the standard glimepiride drug (IC50 = 18.05 ± 0.07 µM for α-amylase and IC50 = 15.02 ± 0 .03 µM for α-glucosidase). The synthesized compounds showed promising antidiabetic potency. Moreover, a molecular docking study was conducted on the most active analogs of the compounds to better understand their interactions with the active sites of the targeted enzymes.
  6. Al Sulayyim H, Ismail R, Al Hamid A, Mohammed B, Abdul Ghafar N
    J Infect Dev Ctries, 2024 Mar 31;18(3):371-382.
    PMID: 38635620 DOI: 10.3855/jidc.19071
    INTRODUCTION: Prevalence of antibiotic resistance (AR) during the coronavirus 2019 (COVID-19) pandemic was higher than pre-pandemic times. This study determined the prevalence and patterns of AR among Gram-positive and negative bacteria before, during and after COVID-19 in Saudi Arabia and identified the associated factors.

    METHODOLOGY: A retrospective cross-sectional study was employed to identify patients with positive AR bacteria between March 2019 and March 2022. The bacterial isolates and patients' data were identified from laboratory and medical records departments retrospectively. Binary logistic regression analysis was performed to identify the factors associated with AR and deaths. Multinominal logistic regression was applied to confirm the factors associated with AR classification.

    RESULTS: AR Gram-negative bacteria decreased during and after the pandemic. However, S. aureus showed a negligible increase in resistance rate after pandemic, while E. faecium, recorded a higher-than-average resistance rate during the pandemic. The prevalence of pan drug resistance (PDR) during the pandemic (85.7%) was higher than before (0%) and after (14.3%), p = 0.001. The length of stay and time were significant predictors for AR classification. The odds of multi drug resistance (MDR) development to PDR during the pandemic were 6 times higher than before and after (OR = 6.133, CI =, p = 0.020). Age, nationality, COVID-19 infection, smoking, liver disease, and type and number of bacteria were associated with death of patients with positive AR.

    CONCLUSIONS: Further studies are recommended to explore the prevalence of PDR and to justify the increased rates of E. faecium AR during the COVID-19 pandemic.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links