Displaying all 8 publications

Abstract:
Sort:
  1. Mohammed AA, Haris SM
    Sci Rep, 2022 Feb 11;12(1):2382.
    PMID: 35149750 DOI: 10.1038/s41598-022-06404-3
    In this study, a diagnosis method was successfully implemented to identify different sounds coming from individual mechanical parts within a group of engine moving parts controlled through a variable valve timing system. The novelty of this diagnosis method is in the determination of specific sounds coming from each part within this group when they are in good working condition and without any defects. This will facilitate in early detection of faults occurring on the parts, identified through changes in the sound wave energy. Through this study, this diagnosis method was validated in three ways, namely the consistency of the results with previous studies, the synchronization of sounds from mechanical parts in overlapping cases, and the cross-correlation of engine sound modes that results from analysis using the Hilbert Huang Transform. In this paper, the distribution of sound energy according to its frequencies was utilized to distinguish which of the engine combustion chambers of a Dodge Journey 2.4 was faulty. To conduct that, the noise-based test technique was selected to record the engine sound. The results show that there is a link between the RMS energy of the engine sound and the engine output torque.
  2. Mohammed AA, Haris SM, Nuawi MZ
    Ultrasonics, 2015 Jan;55:133-40.
    PMID: 25096851 DOI: 10.1016/j.ultras.2014.07.001
    Refractory metals have attracted increasing interest in recent years because of their use in many high-temperature applications. However, the characteristics of these metals calculated using loaded tests (such as tensile strength tests) differ considerably from those calculated using one of the most famous methods in NDT which is called time of flying of the wave (TOF).The present study presents two solutions based on calculating the pressure transmission coefficient (PTC) of the transmitted wave between the test sample and magnesium metal. The first is based on the development of a highly accurate algorithm that lowers the cost by determining the acoustic impedance of the test specimen to calculating mechanical properties. Up to 26 theoretical tests were done (10 of these tests for refractory materials) according to their known mechanical properties to verify the accuracy of the algorithm. The convergence in results ranged from 92% to 99%. The second solution was designed to solve the same problem for specimens with a thickness of less than 1mm. Eight experimental tests were done (five using refractory materials) to verify the accuracy of the second solution, with the convergence in the results ranging from 94% to 97%. The relationships of the Vrms measured from the oscilloscope with the PTC and with the Fourier transform spectrum were derived. The results of this research were closer to the standard mechanical properties for refractory metals compared with several recent acoustic tests.
  3. Mohammed AA, Haris SM, Al Azzawi W
    Sci Rep, 2020 Jul 29;10(1):12676.
    PMID: 32728209 DOI: 10.1038/s41598-020-69387-z
    In this paper, the acoustic impedance property has been employed to predict the ultimate tensile strength (UTS) and yield strength (YS) of pure metals and alloys. Novel algorithms were developed, depending on three experimentally measured parameters, and programmed in a MATLAB code. The measured parameters are longitudinal wave velocity of the metal, density, and crystal structure. 19-samples were considered in the study and divided into 3-groups according to their crystal structure; 7-FCC, 6-BCC, and 6-HCB. X-ray diffraction was used to examine the crystal structure of each sample of each group, while longitudinal wave velocity and metals' density were measured experimentally. A comparison between mechanical properties predicted by the model and the ASTM standards was done to investigate the validity of the model. Furthermore, predicted stress-strain curves were compared with corresponding curves in the pieces literature as an additional validation check. The results revealed the excellence of the model with 85-99% prediction accuracy. The study also proved that if metals are grouped according to their crystal structure, a relation between UTS, YS, and modulus of elasticity (E) properties and wave pressure transmission coefficient (Tr) could be formulated.
  4. Mohammed AA, Mohammad GA, Mohamed A, Mohamed A, Ahmed M
    Chin J Nat Med, 2013 Sep;11(5):488-93.
    PMID: 24359772 DOI: 10.1016/S1875-5364(13)60089-8
    The anticoagulant effect of leech saliva was traditionally employed in the treatment of diabetes mellitus complications such as peripheral vascular complications. This study was carried out to examine the effect of leech saliva extract (LSE) on blood glucose levels in alloxan-induced diabetic rats. First, LSE was collected from leeches which were fed on a phagostimulatory solution. Second, total protein concentration was estimated using the Bradford assay. Third, diabetic rats were injected subcutaneously (sc) with LSE at doses of 500 and 1 000 μg·kg(-1) body weight (bw). Other diabetic rats were injected sc with insulin at doses of 10 and 20 U·kg(-1) bw. Another group was injected simultaneously with LSE (250 μg·kg(-1) bw) and insulin (10 U·kg(-1) bw). Fasting blood glucose (FBG) concentrations were monitored during a study period of eight hours at regular intervals. Findings showed that both doses of LSE resulted in a significant and gradual decrease in FBG starting from 10%-18% downfall after two hours of injection reaching the maximal reduction activity of 58% after eight hours. Remarkably, LSE was sufficient to bring the rats to a near norm-glycemic state. The high dose of insulin induced a severe hypoglycemic condition after 2-4 h of injection. The lower dose was able to decline FBG for 2-6 h in rats which became diabetic again after 8 h. On the other hand, the concurrent injection of low doses of LSE and insulin produced a hypoglycemic effect with all rats showing normal FBG levels. Taken together, these findings indicated that the subcutaneous injection of LSE of the medicinal Malaysian leech was able to provide better glycemic control compared with insulin. Moreover, the synergism between LSE and insulin suggests that LSE could be utilized as an adjuvant medication in order to reduce insulin dosage or to achieve better control of blood glucose.
  5. Mohammed AA, Nahazanan H, Nasir NAM, Huseien GF, Saad AH
    Materials (Basel), 2023 Feb 28;16(5).
    PMID: 36903132 DOI: 10.3390/ma16052020
    Calcium-based binders, such as ordinary Portland cement (OPC) and lime (CaO), are the most common artificial cementitious materials used worldwide for concrete and soil improvement. However, using cement and lime has become one of the main concerns for engineers because they negatively affect the environment and economy, prompting research into alternative materials. The energy consumption involved in producing cementitious materials is high, and the subsequent CO2 emissions account for 8% of the total CO2 emissions. In recent years, an investigation into cement concrete's sustainable and low-carbon characteristics has become the industry's focus, achieved by using supplementary cementitious materials. This paper aims to review the problems and challenges encountered when using cement and lime. Calcined clay (natural pozzolana) has been used as a possible supplement or partial substitute to produce low-carbon cement or lime from 2012-2022. These materials can improve the concrete mixture's performance, durability, and sustainability. Calcined clay has been utilized widely in concrete mixtures because it produces a low-carbon cement-based material. Owing to the large amount of calcined clay used, the clinker content of cement can be lowered by as much as 50% compared with traditional OPC. It helps conserve the limestone resources used in cement manufacture and helps reduce the carbon footprint associated with the cement industry. Its application is gradually growing in places such as Latin America and South Asia.
  6. Yahia HAM, Mohammed AA, Eissa T, Albrka SI, Ladin MA, Jashami H
    Data Brief, 2024 Apr;53:110184.
    PMID: 38406255 DOI: 10.1016/j.dib.2024.110184
    Road traffic accidents constitute the primary cause of fatalities associated with injuries and engender substantial economic ramifications for affected individuals, their families, and entire nations. The Sultanate of Oman, like other countries, suffers from traffic accident injuries and traffic congestion. The accident rate for the period 2021 was recorded as one accident every six hours. Despite a 70% increase in total number of vehicles and an 81% rise in licensed drivers between 2012 and 2019, data on traffic accidents demonstrate an improving trend with a notable 55% decline in crash fatalities. However, it is important to recognize that road traffic accidents in Oman encompass not only social issues but also pose a significant economic burden, resulting in substantial financial costs for the nation. Notwithstanding, it was discovered that more than 50% of fatal crashes in Oman were primarily caused by excessive speeding. The main goal of this research is to analysis the causes and trends of traffic accidents at the national level in the Sultanate of Oman. Data analysis reveals speed as the primary cause of traffic accidents in Oman, with Muscat and Dhofar registering the highest accident rates. In addition, the distribution of deaths and injuries resulting from accidents varies according to Gender and nationality. According to the road accident scenario analysis in the state, more traffic accidents occurred in males than females. Traffic accidents have witnessed a notable decline over the past decade, attributable to the diligent efforts and interventions implemented by the Royal Oman Police.
  7. Gani M, Rovie-Ryan JJ, Sitam FT, Kulaimi NAM, Zheng CC, Atiqah AN, et al.
    Zookeys, 2021;1076:25-41.
    PMID: 34975272 DOI: 10.3897/zookeys.1076.73262
    Conservation translocation and reintroduction for the purpose of repopulating and reinforcing extirpated or depleted populations has been recognised as an important conservation tool, particularly for gibbon conservation in the immediate future. Feasibility assessments involving multiple factors, including taxonomic and genetic assessment of rescued and captive gibbons, are imperative prior to translocation and reintroduction programmes. In this study, we attempt to determine the subspecies and origin of captive Hylobateslar, White-handed gibbons, from Peninsular Malaysia to assist in future translocation and reintroduction programmes. A total of 12 captive and rescued H.lar samples were analysed using the control region segment of mitochondrial DNA. Sequence analyses and phylogenetic trees constructed using neighbour-joining, maximum likelihood, Bayesian inference, and network methods congruently differentiate all 12 captive individuals used in this study from other H.lar subspecies suggesting that these individuals belong to the H.larlar subspecies. In addition, two populations of H.l.lar were observed: (1) a southern population consisting of all 12 individuals from Peninsular Malaysia, and (2) a possible northern population represented by three individuals (from previous studies), which might have originated from the region between the Isthmus of Kra, Surat Thani-Krabi depression, and Kangar-Pattani. Our findings suggest that the complete control region segment can be used to determine the subspecies and origin of captive H.lar.
  8. Mohammed AA, Shantier SW, Mustafa MI, Osman HK, Elmansi HE, Osman IA, et al.
    J Immunol Res, 2020;2020:2567957.
    PMID: 32377531 DOI: 10.1155/2020/2567957
    Background: Nipah belongs to the genus Henipavirus and the Paramyxoviridae family. It is an endemic most commonly found at South Asia and has first emerged in Malaysia in 1998. Bats are found to be the main reservoir for this virus, causing disease in both humans and animals. The last outbreak has occurred in May 2018 in Kerala. It is characterized by high pathogenicity and fatality rates which varies from 40% to 70% depending on the severity of the disease and on the availability of adequate healthcare facilities. Currently, there are no antiviral drugs available for NiV disease and the treatment is just supportive. Clinical presentations for this virus range from asymptomatic infection to fatal encephalitis.

    Objective: This study is aimed at predicting an effective epitope-based vaccine against glycoprotein G of Nipah henipavirus, using immunoinformatics approaches.

    Methods and Materials: Glycoprotein G of the Nipah virus sequence was retrieved from NCBI. Different prediction tools were used to analyze the epitopes, namely, BepiPred-2.0: Sequential B Cell Epitope Predictor for B cell and T cell MHC classes II and I. Then, the proposed peptides were docked using Autodock 4.0 software program. Results and Conclusions. The two peptides TVYHCSAVY and FLIDRINWI have showed a very strong binding affinity to MHC class I and MHC class II alleles. Furthermore, considering the conservancy, the affinity, and the population coverage, the peptide FLIDRINWIT is highly suitable to be utilized to formulate a new vaccine against glycoprotein G of Nipah henipavirus. An in vivo study for the proposed peptides is also highly recommended.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links