Displaying all 6 publications

Abstract:
Sort:
  1. Harun N, Kamaruzaman NA, Mohamed Sofian Z, Hassan Z
    Neurosci Lett, 2022 Jan 31;773:136500.
    PMID: 35114335 DOI: 10.1016/j.neulet.2022.136500
    Opioid use disorder (OUD) has become a significant public health issue worldwide. Methadone and buprenorphine are the most common medications used for treating OUD. These drugs have the potential to assist many patients in managing their opioid dependence and withdrawal but they are currently misused and associated with certain compliance issues, side effects, and risk of relapse. As an opioid-like herbal supplement, Mitragyna speciosa Korth or kratom has received increased attention for managing chronic pain and opioid withdrawal symptoms. Nevertheless, the use of kratom as a self-treatment medication for opioid dependence continues to be controversial due to concerns raised about its effectiveness, safety, and abuse liability. The main active alkaloid constituent of the plant, mitragynine, has been shown to act as a partial mu-opioid agonist. Given this pharmacology, studies have been focusing on this psychoactive compound to examine its potential therapeutic values as medication-assisted therapy (MAT). This review aims to provide a current preclinical overview of mitragynine as a prospective novel option for MAT and summarise the recent developments in determining if the plant's active alkaloid could provide an alternative to opioids in the treatment of OUD.
  2. Mohamed Sofian Z, Harun N, Mahat MM, Nor Hashim NA, Jones SA
    Eur J Pharm Biopharm, 2021 Nov;168:53-61.
    PMID: 34455038 DOI: 10.1016/j.ejpb.2021.08.003
    Transiently associating amines with therapeutic agents through the formation of ion-pairs has been established both in vitro and in vivo as an effective means to systemically direct drug delivery to the lung via the polyamine transport system (PTS). However, there remains a need to better understand the structural traits required for effective PTS uptake of drug ion-pairs. This study aimed to use a structurally related series of amine counterions to investigate how they influenced the stability of theophylline ion-pairs and their active uptake in A549 cells. Using ethylamine (mono-amine), ethylenediamine (di-amine), spermidine (tri-amine) and spermine (tetra-amine) as counterions the ion-pair affinity was shown to increase as the number of protonated amine groups in the counterion structure increased. The mono and diamines generated a single hydrogen bond and the weakest ion-pair affinities (pKFTIR: 1.32 ± 0.04 and 1.43 ± 0.02) whereas the polyamines produced two hydrogen bonds and thus the strongest ion-pair affinities (pKFTIR: 1.93 ± 0.05 and 1.96 ± 0.04). In A549 cells depleted of endogenous polyamines using α-difluoromethylornithine (DFMO), the spermine-theophylline uptake was significantly increased (p 
  3. Shazleen Ibrahim I, Starlin Chellathurai M, Mahmood S, Hakim Azmi A, Harun N, Ulul Ilmie Ahmad Nazri M, et al.
    Int J Pharm, 2024 Feb 15;651:123735.
    PMID: 38142874 DOI: 10.1016/j.ijpharm.2023.123735
    Colorectal cancer (CRC) continues to be one of the most prevalent and deadliest forms of cancer worldwide, despite notable advancements in its management. The prognosis for metastatic CRC remains discouraging, with a relative 5-year survival rate for stage IV CRC patients. Conventional treatments for advanced malignancies such as chemotherapy, often face limitations in effectively targeting cancer cells resulting in off-target distribution and significant side effects. In the quest for better strategies, researchers have explored numerous alternatives. Among these, nanoparticles (NPs) specifically liposomes have emerged as one of the most promising candidates in developing targeted delivery systems for cancer therapeutics. This review discusses the current approaches employing functionalised liposomes to overcome major biological barriers in therapeutics delivery for CRC treatment. We have also shared our perspectives on the technological development of liposomes for future clinical use and highlighted a few useful insights on the material choices for future research work in CRC.
  4. Ahmad Ruzaidi DA, Mahat MM, Mohamed Sofian Z, Nor Hashim NA, Osman H, Nawawi MA, et al.
    Polymers (Basel), 2021 Aug 28;13(17).
    PMID: 34502941 DOI: 10.3390/polym13172901
    Herein we report the synthesis and characterization of electro-conductive chitosan-gelatin-agar (Cs-Gel-Agar) based PEDOT: PSS hydrogels for tissue engineering. Cs-Gel-Agar porous hydrogels with 0-2.0% (v/v) PEDOT: PSS were fabricated using a thermal reverse casting method where low melting agarose served as the pore template. Sample characterizations were performed by means of scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction analysis (XRD) and electrochemical impedance spectroscopy (EIS). Our results showed enhanced electrical conductivity of the cs-gel-agar hydrogels when mixed with DMSO-doped PEDOT: PSS wherein the optimum mixing ratio was observed at 1% (v/v) with a conductivity value of 3.35 × 10-4 S cm-1. However, increasing the PEDOT: PSS content up to 1.5 % (v/v) resulted in reduced conductivity to 3.28 × 10-4 S cm-1. We conducted in vitro stability tests on the porous hydrogels using phosphate-buffered saline (PBS) solution and investigated the hydrogels' performances through physical observations and ATR-FTIR characterization. The present study provides promising preliminary data on the potential use of Cs-Gel-Agar-based PEDOT: PSS hydrogel for tissue engineering, and these, hence, warrant further investigation to assess their capability as biocompatible scaffolds.
  5. Ahmad Ruzaidi DA, Mahat MM, Shafiee SA, Mohamed Sofian Z, Mohmad Sabere AS, Ramli R, et al.
    Polymers (Basel), 2021 Oct 02;13(19).
    PMID: 34641210 DOI: 10.3390/polym13193395
    Scaffolds support and promote the formation of new functional tissues through cellular interactions with living cells. Various types of scaffolds have found their way into biomedical science, particularly in tissue engineering. Scaffolds with a superior tissue regenerative capacity must be biocompatible and biodegradable, and must possess excellent functionality and bioactivity. The different polymers that are used in fabricating scaffolds can influence these parameters. Polysaccharide-based polymers, such as collagen and chitosan, exhibit exceptional biocompatibility and biodegradability, while the degradability of synthetic polymers can be improved using chemical modifications. However, these modifications require multiple steps of chemical reactions to be carried out, which could potentially compromise the end product's biosafety. At present, conducting polymers, such as poly(3,4-ethylenedioxythiophene) poly(4-styrenesulfonate) (PEDOT: PSS), polyaniline, and polypyrrole, are often incorporated into matrix scaffolds to produce electrically conductive scaffold composites. However, this will reduce the biodegradability rate of scaffolds and, therefore, agitate their biocompatibility. This article discusses the current trends in fabricating electrically conductive scaffolds, and provides some insight regarding how their immunogenicity performance can be interlinked with their physical and biodegradability properties.
  6. Starlin Chellathurai M, Mahmood S, Mohamed Sofian Z, Wan Hee C, Sundarapandian R, Ahamed HN, et al.
    Drug Deliv, 2024 Dec;31(1):2296350.
    PMID: 38147499 DOI: 10.1080/10717544.2023.2296350
    Microneedle (MN) delivery devices are more accepted by people than regular traditional needle injections (e.g. vaccination) due to their simplicity and adaptability. Thus, patients of chronic diseases like diabetes look for alternative pain-free treatment regimens circumventing regular subcutaneous injections. Insulin microneedles (INS-MNs) are a thoughtfully researched topic (1) to overcome needle phobia in patients, (2) for controlled delivery of the peptide, (3) decreasing the frequency of drug administration, (4) to ease the drug administration procedure, and (5) thus increasing patient adherence to the treatment dosage regimes. MNs physically disrupt the hard outer skin layer to create minuscule pores for insulin (INS) to pass through the dermal capillaries into the systemic circulation. Biodegradable polymeric MNs are of greater significance for INS and vaccine delivery than silicon, metal, glass, or non-biodegradable polymeric MNs due to their ease of fabrication, mass production, cost-effectiveness, and bioerodability. In recent years, INS-MNs have been researched to deliver INS through the transdermal implants, buccal mucosa, stomach wall, intestinal mucosal layers, and colonic mucosa apart from the usual transdermal delivery. This review focuses on the design characteristics and the applications of biodegradable/dissolvable polymeric INS-MNs in transdermal, intra-oral, gastrointestinal (GI), and implantable delivery. The prospective approaches to formulate safe, controlled-release INS-MNs were highlighted. Biodegradable/dissolvable polymers, their significance, their impact on MN morphology, and INS release characteristics were outlined. The developments in biodegradable polymeric INS-MN technology were briefly discussed. Bio-erodible polymer selection, MN fabrication and evaluation factors, and other design aspects were elaborated.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links