Successful DNA amplification is vital for the detection of specific DNA targets in feeds, and this in return depends on the ability of DNA extraction methods to produce good quality DNA. In this study, seven methods were compared for DNA extraction from feeds using quantitative polymerase chain reaction (PCR) of single copy maize (Zea mays) endogenous hmg (high mobility group) gene. Relative levels of hmg were used to evaluate the DNA quality. Spectrophotometer determination of DNA was also carried out to assess DNA yield and DNA purity, while electrophoretic analysis of genomic DNA extracts was carried out to investigate DNA integrity. The findings illustrate that the DNA extraction methods have a significant effect on DNA quality. Statistically, the Epicentre method extracted the highest DNA yield while the Wizard method had the lowest DNA yield with high DNA purity and integrity. However, the Wizard method recovered the most amplifiable DNA per reaction, indicating that template quality and integrity had greater influence over hmg amplification than DNA yield.
The aim of this study is to compare the occurrence of thermophilic Campylobacter spp. in chicken retail at wet markets and hypermarkets. Campylobacter contaminations in chicken samples from wet market (70.7%) were comparatively lower than chicken samples sold in hypermarket (91.4%). Of the 77 Campylobacter isolates, 59 (76.6%) were identified as Campylobacter jejuni and 18 (23.4%) isolates were identified as C. coli. All Campylobacterisolates are multi-resistant to the antimicrobial agents. Most of the isolates were resistant to tetracycline (92.2%) and erythromycin (98.7%). This study concluded that chicken samples from both wet market and hypermarket were contaminated with Campylobacter, most of which are antimicrobial-resistant strains.
The present study aimed to provide an insight of C. jejuni ATCC 33560 phenotype profiles (carbon sources and sensitivity to osmolytes and pH) using Phenotypic MicroArray (PM) system in response to optimal and suboptimal temperature. C. jejuni ATCC 33560 showed utilization carbon sources from amino acids and carboxylates but not from sugars. C. jejuni ATCC 33560 is sensitive to NaCl at 2% and above but showed survival in a wide range of food preservatives (sodium lactate, sodium phosphate, sodium benzoate, ammonium sulphate and sodium nitrate). When incubated at suboptimal temperature, no phenotype loss was observed in carbon source plates. Phenotype loss of C. jejuni ATCC 33560 was observed in sodium chloride (1%), sodium sulphate (2-3%), sodium formate (1%), sodium lactate (7-12%), sodium phosphate pH7 (100mM and 200mM), ammonium sulphate pH8 (50mM), sodium nitrate (60mM, 80mM and 100mM), sodium nitrite (10mM), and growth in pH5. The phenotypic profile from present study will provide a better insight related to survival of C. jejuni ATCC 33560.
Pulsed-UV is an emerging innovation in non-thermal processing and is scarcely explored. This study introduces a combined treatment of microwave and pulsed-UV to reduce the microbial load in yellow alkaline noodle (YAN), a popular staple food among South East Asians that is easily perishable, without jeopardising its textural qualities. Results indicated that the combination of 5 s microwave (power = 900 W; frequency = 2450 MHz) and 3.5 J/cm2 pulsed-UV significantly reduced aerobic plate count and spore forming bacteria, from 637.5 to 50 CFU/g and 1500 to 100 CFU/g, respectively. In terms of textural properties, even though significant changes were detected in hardness and springiness for treated YAN kept at ambient storage as compared to control, the alterations were not prominent. Based on these observations, it is concluded that a combined treatment of microwave and pulsed-UV successfully improved the shelf life of YAN at ambient storage by 50%, from 1.0 day (control) to 1.5 days (treated sample) and by 140%, from 2.0 to 4.8 weeks at chilled storage. Current study proves the potential of microwave + pulsed-UV, a "green" hurdle treatment, to extend the shelf life of preservative-free YAN without causing major undesirable textural alterations on the noodle.