Displaying all 3 publications

Abstract:
Sort:
  1. Mohamad AQ, Khan I, Ismail Z, Shafie S
    Springerplus, 2016;5(1):2090.
    PMID: 28018798 DOI: 10.1186/s40064-016-3748-2
    BACKGROUND: Non-coaxial rotation has wide applications in engineering devices, e.g. in food processing such as mixer machines and stirrers with a two-axis kneader, in cooling turbine blades, jet engines, pumps and vacuum cleaners, in designing thermal syphon tubes, and in geophysical flows. Therefore, this study aims to investigate unsteady free convection flow of viscous fluid due to non-coaxial rotation and fluid at infinity over an oscillating vertical plate with constant wall temperature.

    METHODS: The governing equations are modelled by a sudden coincidence of the axes of a disk and the fluid at infinity rotating with uniform angular velocity, together with initial and boundary conditions. Some suitable non-dimensional variables are introduced. The Laplace transform method is used to obtain the exact solutions of the corresponding non-dimensional momentum and energy equations with conditions. Solutions of the velocity for cosine and sine oscillations as well as for temperature fields are obtained and displayed graphically for different values of time (t ), the Grashof number (Gr), the Prandtl number ([Formula: see text]), and the phase angle ([Formula: see text]). Skin friction and the Nusselt number are also evaluated.

    RESULTS: The exact solutions are obtained and in limiting cases, the present solutions are found to be identical to the published results. Further, the obtained exact solutions also validated by comparing with results obtained by using Gaver-Stehfest algorithm.

    CONCLUSION: The interested physical property such as velocity, temperature, skin friction and Nusselt number are affected by the embedded parameters time (t), the Grashof number (Gr), the Prandtl number ([Formula: see text]), and the phase angle ([Formula: see text]).

  2. Azmi WFW, Mohamad AQ, Jiann LY, Shafie S
    Sci Rep, 2023 Apr 09;13(1):5799.
    PMID: 37032402 DOI: 10.1038/s41598-023-30129-6
    Nano-cryosurgery is one of the effective ways to treat cancerous cells with minimum harm to healthy adjacent cells. Clinical experimental research consumes time and cost. Thus, developing a mathematical simulation model is useful for time and cost-saving, especially in designing the experiment. Investigating the Casson nanofluid's unsteady flow in an artery with the convective effect is the goal of the current investigation. The nanofluid is considered to flow in the blood arteries. Therefore, the slip velocity effect is concerned. Blood is a base fluid with gold (Au) nanoparticles dispersed in the base fluid. The resultant governing equations are solved by utilising the Laplace transform regarding the time and the finite Hankel transform regarding the radial coordinate. The resulting analytical answers for velocity and temperature are then displayed and visually described. It is found that the temperature enhancement occurred by arising nanoparticles volume fraction and time parameter. The blood velocity increases as the slip velocity, time parameter, thermal Grashof number, and nanoparticles volume fraction increase. Whereas the velocity decreases with the Casson parameter. Thus, by adding Au nanoparticles, the tissue thermal conductivity enhanced which has the consequence of freezing the tissue in nano-cryosurgery treatment significantly.
  3. Saqib M, Khan I, Shafie S, Mohamad AQ
    Sci Rep, 2021 Feb 12;11(1):3725.
    PMID: 33580116 DOI: 10.1038/s41598-020-78421-z
    The colloidal suspension of nanometer-sized particles of Fe3O4 in traditional base fluids is referred to as Ferro-nanofluids. These fluids have many technological applications such as cell separation, drug delivery, magnetic resonance imaging, heat dissipation, damping, and dynamic sealing. Due to the massive applications of Ferro-nanofluids, the main objective of this study is to consider the MHD flow of water-based Ferro-nanofluid in the presence of thermal radiation, heat generation, and nanoparticle shape effect. The Caputo-Fabrizio time-fractional Brinkman type fluid model is utilized to demonstrate the proposed flow phenomenon with oscillating and ramped heating boundary conditions. The Laplace transform method is used to solve the model for both ramped and isothermal heating for exact solutions. The ramped and isothermal solutions are simultaneously plotted in the various figures to study the influence of pertinent flow parameters. The results revealed that the fractional parameter has a great impact on both temperature and velocity fields. In the case of ramped heating, both temperature and velocity fields decreasing with increasing fractional parameter. However, in the isothermal case, this trend reverses near the plate and gradually, ramped, and isothermal heating became alike away from the plate for the fractional parameter. Finally, the solutions for temperature and velocity fields are reduced to classical form and validated with already published results.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links