Displaying all 4 publications

Abstract:
Sort:
  1. Mabhaudhi T, Chimonyo VGP, Hlahla S, Massawe F, Mayes S, Nhamo L, et al.
    Planta, 2019 Sep;250(3):695-708.
    PMID: 30868238 DOI: 10.1007/s00425-019-03129-y
    Orphan crops can contribute to building resilience of marginal cropping systems as a climate chnage adaptation strategy. Orphan crops play an important role in global food and nutrition security, and may have potential to contribute to sustainable food systems under climate change. Owing to reports of their potential under water scarcity, there is an argument to promote them to sustainably address challenges such as increasing drought and water scarcity, food and nutrition insecurity, environmental degradation, and employment creation under climate change. We conducted a scoping review using online databases to identify the prospects of orphan crops to contribute to (1) sustainable and healthy food systems, (2) genetic resources for future crop improvement, and (3) improving agricultural sustainability under climate change. The review found that, as a product of generations of landrace agriculture, several orphan crops are nutritious, resilient, and adapted to niche marginal agricultural environments. Including such orphan crops in the existing monocultural cropping systems could support more sustainable, nutritious, and diverse food systems in marginalised agricultural environments. Orphan crops also represent a broad gene pool for future crop improvement. The reduction in arable land due to climate change offers opportunities to expand the area under their production. Their suitability to marginal niche and low-input environments offers opportunities for low greenhouse gas (GHG) emissions from an agro-ecosystems, production, and processing perspective. This, together with their status as a sub-set of agro-biodiversity, offers opportunities to address socio-economic and environmental challenges under climate change. With research and development, and policy to support them, orphan crops could play an important role in climate-change adaptation, especially in the global south.
  2. Chimonyo VGP, Wimalasiri EM, Kunz R, Modi AT, Mabhaudhi T
    Front Sustain Food Syst, 2020 Oct 22;4:562568.
    PMID: 39036420 DOI: 10.3389/fsufs.2020.562568
    Traditional crop species are reported to be drought-tolerant and nutrient-dense with potential to contribute to sustainable food and nutrition security within marginal production systems under climate change. We hypothesized that intercropping maize landraces (Zea mays L.) with bambara groundnut (Vigna subterranea (L.) Verdc.), together with optimum management strategies, can improve productivity and water use efficiency (WUE) under climate change. Using an ex-ante approach, we assessed climate change impacts and agronomic management options, such as plant ratios, and plant sequences, on yield and WUE of intercropped maize landrace and bambara groundnut. The Agricultural Production Systems sIMulator (APSIM) model was applied over four time periods; namely past (1961-1991), present (1995-2025), mid-century (2030-2060) and late-century (2065-2095), obtained from six GCMs. Across timescales, there were no significant differences with mean annual rainfall, but late century projections of mean annual temperature and reference crop evaporation (ET0) showed average increases of 3.5°C and 155mm, respectively. By late century and relative to the present, the projected changes in yield and WUE were -10 and -15% and 5 and 7% for intercropped bambara groundnut and maize landrace, respectively. Regardless of timescale, increasing plant population improved yield and WUE of intercropped bambara groundnut. Asynchronous planting increased yield and WUE for both maize landrace (5 and 14%) and bambara groundnut (35 and 47%, respectively). Most significant improvements were observed when either crop was planted 2-3 months apart. To reduce yield gaps in intercrop systems, low-cost management options like changing plant populations and sequential cropping can increase yield and WUE under projected climate change. To further increase sustainability, there is a need to expand the research to consider other management strategies such as use of other traditional crop species, fertilization, rainwater harvesting and soil conservation techniques.
  3. Chimonyo VGP, Govender L, Nyathi M, Scheelbeek PFD, Choruma DJ, Mustafa M, et al.
    Front Nutr, 2023;10:1060246.
    PMID: 36793925 DOI: 10.3389/fnut.2023.1060246
    INTRODUCTION: Intercropping cereals with legumes can intensify rainfed cereal monocropping for improved household food and nutritional security. However, there is scant literature confirming the associated nutritional benefits.

    METHODOLOGY: A systematic review and meta-analysis of nutritional water productivity (NWP) and nutrient contribution (NC) of selected cereal-legume intercrop systems was conducted through literature searches in Scopus, Web of Science and ScienceDirect databases. After the assessment, only nine articles written in English that were field experiments comprising grain cereal and legume intercrop systems were retained. Using the R statistical software (version 3.6.0), paired t-tests were used to determine if differences existed between the intercrop system and the corresponding cereal monocrop for yield (Y), water productivity (WP), NC, and NWP.

    RESULTS: The intercropped cereal or legume yield was 10 to 35% lower than that for the corresponding monocrop system. In most instances, intercropping cereals with legumes improved NY, NWP, and NC due to their added nutrients. Substantial improvements were observed for calcium (Ca), where NY, NWP, and NC improved by 658, 82, and 256%, respectively.

    DISCUSSION: Results showed that cereal-legume intercrop systems could improve nutrient yield in water-limited environments. Promoting cereal- legume intercrops that feature nutrient-dense legume component crops could contribute toward addressing the SDGs of Zero Hunger (SDG 3), Good Health and Well-3 (SDG 2) and Responsible consumption and production (SDG 12).

  4. Mayes S, Ho WK, Chai HH, Gao X, Kundy AC, Mateva KI, et al.
    Planta, 2019 Sep;250(3):803-820.
    PMID: 31267230 DOI: 10.1007/s00425-019-03191-6
    MAIN CONCLUSION: Bambara groundnut has the potential to be used to contribute more the climate change ready agriculture. The requirement for nitrogen fixing, stress tolerant legumes is clear, particularly in low input agriculture. However, ensuring that existing negative traits are tackled and demand is stimulated through the development of markets and products still represents a challenge to making greater use of this legume. World agriculture is currently based on very limited numbers of crops, representing a significant risk to food supplies, particularly in the face of climate change which is expected to increase the frequency of extreme events. Minor and underutilised crops can help to develop a more resilient and nutritionally dense future agriculture. Bambara groundnut [Vigna subterranea (L.) Verdc.[, as a drought resistant, nitrogen-fixing, legume has a role to play. However, as with most underutilised crops, there are significant gaps in knowledge and also negative traits such as 'hard-to-cook' and 'photoperiod sensitivity to pod filling' associated with the crop which future breeding programmes and processing methods need to tackle, to allow it to make a significant contribution to the well-being of future generations. The current review assesses these factors and also considers what are the next steps towards realising the potential of this crop.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links